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ABSTRACT 

In aviation, spatial awareness and spatial orientation are essential for performing 

the task of recovering from an unusual attitude. Degraded spatial awareness, particularly 

in extreme flight situations, may lead to lower operational effectiveness and to loss of 

equipment and, in manned aviation, loss of life. Therefore, improvements in spatial 

awareness are important in complex 3D environments, including both manned and 

unmanned aviation. 

The main goal of this thesis was to determine whether a new prototype display 

design, called WEBER-Box, is a useful alternative or supplement to traditional flight 

instruments for unmanned aviation. In addition we combined the traditional flight 

instrument as well as the WEBER-Box with a colored-coded indication when the aircraft 

entered an unusual attitude.  

In this experiment, the participants executed typical tasks of a UAV-operator. We 

investigated the influence of the WEBER-Box on UAV operator’s orientation 

performance. The important results can be summarized as follows: 

1. significant improvement in correctly solving the orientation tasks  

2. significant reduction in time to solve orientation tasks 

3. color coded indication of unusual attitude significantly decreased the 

response time and reduced the error  

4. the proposed display design was accepted, interpreted, and used to solve 

3D-orientation tasks efficiently 
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I. INTRODUCTION 

Human performance in spatial orientation tasks requires spatial awareness and the 

skills of an operator to transition from the current spatial attitude into an acceptable 

spatial orientation and position. Degraded spatial awareness (SA), particularly in extreme 

flight situations, may lead to loss of equipment and reduced operational effectiveness. 

Accidents and loss of aircraft due to spatial disorientation (SD) are not uncommon in 

manned aviation. Loss of SA also occurs in unmanned aviation, even with operators on 

the ground. Surprisingly, losses in manned aviation over the last few years are low and 

decreasing but in unmanned aviation, they are high and increasing. 

How to maintain and improve SA is one of the major issues in complex 3D 

environments. In particular, orientation tasks in 3D environments with many degrees of 

freedom are very difficult to accomplish (Previc & Ercoline, 2004). According to Tsang 

& Vidulich (2003) pilots are selected carefully and receive extensive training to maintain 

their spatial awareness, even in extreme fight situations. 

Different classes of Unmanned Aerial Vehicles (UAV) systems operate in a wide 

variety of operational environments, from safe, remote locations to areas under 

immediate threat of enemy fire. This range of operational environments, combined with 

future plans for single-operators controlling multiple UAVs, leads to complex human-

system interfaces. 

However, the dynamic field of high-flying and Combat UAV demands skilled 

operators who are capable of controlling the aircraft remotely. For large UAVs, pilots are 

usually the first choice for this task. 

The cockpit design of UAVs follows the guidelines of traditional flight 

instrumentation (McCauley & Matsangas, 2004). A legitimate question is whether a new 

prototype display design might improve spatial orientation, especially with an underlying 

color-coding feature when reaching an unusual attitude. McCauley & Matsangas (2004) 

also showed that maintaining spatial awareness and preventing spatial disorientation is a 

key factor when operating a UAV. 
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Since the improvement of the operational utility of UAVs, they have increased 

rapidly in the armed forces of many nations. They have proven to be valuable in recent 

military operations worldwide. However, the rise in UAV use has been accompanied by a 

very high mishap rate due to a number of different causes (Williams, 2004).  

The main motivation for this thesis was to investigate the use of an alternative 

display design for UAV operators for the purpose of improving spatial awareness and 

thereby reducing mishaps. To evaluate this issue, a research questionnaire was sent to 

several US Air Force units and the information derived from that source helped to define 

the research objectives. 

The main goal of the thesis was to determine whether a new prototype display 

design, called WEBER-Box, is a useful alternative or supplement to the traditional flight 

instruments for determining and correcting for unusual attitudes. The application 

specifically investigated was operation of a UAV such as Predator. Another objective 

was to determine whether non-aviator operators will perform as well as aviators operating 

a UAV, even in extreme flight situations or flight maneuvers, when supported with 

different types of attitude indicators. We conducted an experiment where the participants 

performed typical control tasks of a UAV-operator. The experimental task required 

participants to be aware of their spatial orientation and to judge their current attitude 

(pitch and roll orientation). This study investigated the potential of a new display design, 

the WEBER-Box, compared to the traditional flight instruments when performing spatial 

orientation tasks necessary to operate a UAV. The following research questions were 

addressed: 

• Will the new display design help the pilot/operator to recognize the 
current attitude? 

• Will the new display design help the pilot/operator to differentiate 
between a usual or unusual attitude? 

• Will the new design help to prevent misperception of an unusual attitude 
when the UAV is not in an unusual attitude? 

The core research question to be answered was, if the new design supports the 

recognition of the current attitude. An additional research question was, if it aids recovery 

when an unusual attitude exists and help preventing misperception of an unusual attitude 

when the UAV is performing normally. 
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II. BACKGROUND – COGNITION IN AVIATION 

A. SITUATIONAL AWARENESS 
SA is a complex mix of many different factors. In general it can be defined ”as 

the perception, understanding, and the ability to forecast the factors affecting the aircraft 

at any moment in time” (Moroze & Snow, 1999). 

Endsley (1988) provided a first established definition. According to her, SA is 

“the pilot’s internal model of the world around him at any point in time.” It is derived 

from the aircraft instrumentation, the out-the-window view, and his or her senses. 

Individual capabilities, training, experience, objectives, and the ability to respond to task 

workload moderate the quality of the operator’s SA. She expanded in 1995 her definition 

by addressing for the first time three different levels. SA provides “the primary basis for 

subsequent decision making and performance in the operation of complex, dynamic 

systems…” At its lowest level the operator needs to perceive relevant information, next 

he has to integrate the data in conjunction with task goals, and at its highest level, predict 

future events and system states based on this understanding. Vidulich (1995) describes it 

succinctly as referring to the pilot’s cognitive understanding of the current situation and 

its implications. According to Jaslow (1998), SA is the knowledge of the aircraft’s 

location in space (position and attitude), awareness of the environment (terrain geography 

and features, weather-related conditions such as turbulence and icing), understanding 

communication (within the cockpit and via the air traffic controller), correct reading of 

the instruments, and knowledge of malfunctioning controls and/ or instruments. This 

definition provides the wide approach of SA. It also indicates that spatial orientation, as 

shown in a succeeding chapter, is only one part of SA, because it only describes the 

knowledge of the aircraft’s orientation in space (Gawron, 2004). 

Endsley (2000) described this information coherence as an information gap (see 

Figure 1). 
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Figure 1.   The information gap (Endsley, 2000) 

 

In addition, Endsley (1999 and 2000) discusses three different levels of SA: 

Level 1: Perception The first step “is to perceive the status, attributes, and 

dynamics of relevant information in the environment” 

(Endsley, 1999), which is fundamental in a current 

situation. Without the perception of the most 

important information, the option of building an 

incorrect picture of the situation increases. 

Level 2: Comprehension Comprehension expands the first level by under- 

standing the importance of those elements. 

Combining, interpreting, storing, and retaining these 

information is gaining importance. 

Level 3: Projection Deriving lessons and consequences from the former 

levels enables the operator to project future events 

and actions.  
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The interaction, not only of the three levels of SA, but also the whole complex of 

SA can be illustrated with Figure 2. 

 
Figure 2.   Model of SA in dynamic decision making (Endsley, 2000) 

 

B. SPATIAL AWARENESS 
To understand the term “spatial awareness” and to put it into the right context, it 

is important to know that it is only one component of SA. The other components of SA 

are system awareness and task awareness. Each of these components has real-world 

implications, spatial awareness for example for instrument displays. 

Therefore spatial awareness is the understanding of the location, in 3D-space, of 

particular objects within a given environment. Consequently, spatial awareness is 

necessary in order to know, for example, the relative location of enemy targets, friendly 

or neutral forces. Increasing one’s conceptual understanding of a particular 3D-space, 

also increases one’s spatial awareness. It is important to gain a mental picture of the 

current situation because with this ability a pilot or operator is more able to predict the 

future situation and thus be able to operate the aircraft proactively (Wickens, 2002). 
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Wickens (2002b) also describes six different variables that are important for the 

mental picture of a pilot: 

• pitch 

• roll 

• yaw 

• altitude 

• deviation from a flight path 

• position along a flight path 

 

Thus flight instruments which are displaying information about these variables in 

an appropriate manner contribute significantly to the spatial awareness of a pilot or 

operator of a UAV. 

 

C. SPATIAL ORIENTATION / DISORIENTATION 
In general, humans are adapted to maintain spatial orientation on the ground. 

Since they are not designed for the three-dimensional environment of flying, which is 

unfamiliar to their body systems, sensory conflicts and illusions are almost inevitable. 

Therefore, spatial orientation is sometimes difficult, even impossible to achieve 

(Antunano, 2003). Three sensory systems (see Figure 3 and Figure 4) provide the 

information necessary to maintain the equilibrium and determine where we are and how 

we are orientated: 

• Visual system: The eyes, which sense position and movement based on 
optical information. 

• Vestibular system: Organs of balance found in the inner ear that sense 
linear and angular acceleration and support posture and locomotion. 

• Somatosensory system: Nerves in the skin, muscles, and joints, 
which, along with hearing, sense position and movement based on gravity, 
feeling, and sound. 
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Figure 3.   Spatial orientation (Antunano, 2000) 

 

 
Figure 4.   Spatial orientation (Antunano, 2003) 

 

Spatial orientation in flight is difficult to achieve because the three different 

sensory systems vary in magnitude, direction, and frequency. Any differences or 

discrepancies result in a sensory mismatch that can produce illusions and lead to spatial 

disorientation. Good spatial orientation relies on the effective perception, integration and 

interpretation of their sensory information (Antunano, 2003). Thus one major issue is the 

question of appropriate countermeasures. The most common one is to “trust your 

instruments.” On the other hand, flying by instruments increases demands on mental 

resources, task load, and disorientation stress (Braithwaite, Durnford, DeRoche, Alvarez, 

Jones, Hidgon et al., 1997). 



8 

SD is a failure “to sense correctly the position, motion, or attitude of the aircraft 

or of him/ herself within the fixed coordinate system provided by the surface of the earth 

and the gravitational vertical” (Benson, 1988). In addition, errors in perception by the 

aviator of his position, motion, or attitude with respect to his aircraft, or of his own 

aircraft relative to other aircraft, may also be embraced within a broader definition of SD. 

Any condition that deprives the pilot of natural, visual references to maintain orientation 

can rapidly cause SD. Regardless of a pilot’s experience or proficiency, sensory illusions 

can lead to differences between instrument indications and what the pilot feels the aircraft 

is doing. 

SD in flight operations has been a common problem since the early days of 

aviation. Accidents continue to occur despite improvements in the display of information 

to the pilot. Even with improvements of manufacturing technologies, quality control, and 

aircraft maintenance, accidents still occur. Reasons for this fact are related for example to 

new technologies such as night vision goggles. Flight operations can now be executed in 

environments that have not been possible before (Benson, 1988). 

Between 1990 and 1999, the United States Air Force (USAF) experienced 36 SD-

related Class A mishaps. These have cost a total of $557M and even more important, the 

loss of 44 aircrew. These economic consequences of SD are enormous, both in cost of 

lost aircraft, lost aircrew, and cost of training new aircrew (Heinle & Ercoline, 2003). For 

example, in the period 1992 – 2000, SD was the cause of 20.2% of USAF Class A 

mishaps. Respectively US Army with 27% and US Navy with 26% rate in an equivalent 

period. But on the other hand, in a period of 1972 – 2000 USAF Class A mishaps have 

decreased in an overall rate from 2.5 accidents per 100.000 flying hours in 1972 to a rate 

of 1.0 in 2002. Despite this decrease, the rate of SD has only fallen from 0.5 to 0.25 and 

has remained constant in the last 15 years (Benson, 2000). Therefore, in general, SD is 

still the single most common cause of human-related aircraft accidents (Heinle & 

Ercoline, 2003). 

The literature distinguishes between three different types of SD. About 80% of all 

Class A SD accidents are of type I and unrecognized. Pilots do not consciously perceive 

any manifestation of SD and most often it occurs when he/ she breaks a cross-check. 
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Most likely it also leads into a controlled flight into terrain. 20% of all SD Class A 

accidents are form type II. The pilot consciously perceives a manifestation of SD but may 

not attribute it to SD. Often, he suspects an instrument malfunction. The most well-

known example is the Graveyard spin (see Figure 5). In this case the pilot realizes a 

conflict between the information displayed by the instruments and the feeling generated 

by the inner ear. The pilot has to decide which sensory system to believe. If he/ she trust 

his/ her inner ear, the aircraft may spin all the way to ground impact. The last type, type 

III, of SD, also called incapacitating SD, is the least common, known and understood. 

Few written reports exist at all, but it is known through experience and pilot reports. An 

example is named “giant hand illusion” (see Figure 6). Sometimes pilots feel that they are 

unable to move the controls in one direction, although they are capable of moving the 

controls in any other direction. A suggested countermeasure is to remove the hands from 

the controls and try it again by only using fingers without arm movements. Even a 

technical inspection after the flight showed no evidence of a technical malfunction and it 

is not possible to duplicate the problem (Heinle & Ercoline, 2002). 

 

 
Figure 5.   Graveyard Spin (Heinle & Ercoline, 2002) 
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Figure 6.   Giant Hand Illusion (Heinle & Ercoline, 2002) 

 

Each type of SD affects the pilot in a different way, and each should be 

thoroughly understood by the pilot before he or she experiences them in flight. Although 

the phenomenon of SD has been described and documented by many, both researcher and 

aircrew, since the earliest days of aviation, a complete understanding of the complex 

mechanisms and interactions has remained elusive.  

According to Benson, 2002, the human factors and aero-medical community also 

has to be aware of SD in virtual reality and in operating UAVs. He defines SD as a 

misperception of the key elements in the flight environment. These key elements may 

include navigation, weather, tactics, nature of threats, aircraft systems, and spatial 

orientation. The task of piloting a UAV may be sensitive to SD, especially in cases of 

highly maneuverable vehicles, such as Combat-UAV where information is provided by 

optical and other sensors, and in extreme environmental conditions, like high wind 

speeds. In these cases, he concludes, there is a considerable potential for pilot 

disorientation and loss of control. Several factors, like restricted field of view, and lags in 

the display of information can be causes of mishaps. In addition, there is also the lack of 
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motion stimuli to the operator’s body, in contrast to manned aviation. Unlike in 

conventional aviation, SD is widely underestimated for unmanned aviation. Since 

unmanned aviation lacks the direct physical perception and feedback, we expect that 

improved display concepts will contribute to a better spatial awareness and, hence, will 

decrease the potential for SD. A 10-year cross sectional review of human factors in UAV 

mishaps within the U. S. Department of Defense (DoD) supports Benson’s position. 

Interestingly, the outcome of this DoD-review is that the misperception error was present 

in 5% of all UAV mishaps.  
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III. COCKPIT AND DISPLAY DESIGN 

A. GENERAL PRINCIPLES DISPLAY DESIGN 
The design of flight instruments and the cockpit panel have a long history, 

beginning with Elmer Sperry and the Airborne Gyro (Hughes, 1971). Even in the earliest 

powered flights, keeping the simple planes steady was difficult. The addition of 

gyroscopes in 1914 brought new instruments to the cockpit, helping the pilot to maintain 

steady control. Gyroscopes and their derivatives remain an important part of flight 

technology. Basically they have not changed since the beginning of aviation. Moreover, 

they have been, and still are, the pilot’s main source of information. They are his tool for 

flying in an usual attitude, recovering from an unusual attitude, and for preventing 

mishaps. 

Traditional cockpit design and flight instruments have almost always been arrayed 

with the most important instruments in the shape of a T (see Figure 7). This configuration 

can be found in a wide variety of aircraft from the beginning of aviation to the latest 

models of aircraft. 

 
Figure 7.   Basic layout of flight instruments (Anderson, 2002) 
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The center spot is always reserved for the artificial horizon or attitude indicator, 

which is not only one of the oldest instruments but also one of the most important. It 

provides information to the pilot about his current situation in space and therefore 

displays the flight attitude relative to the earth (see Figure 8). Pitch attitude is indicated 

by up and down motion of the sphere with respect to horizontal reference. Roll attitude is 

indicated by rotational motion of roll pointer with respect to the fixed roll scale located at 

top of the display. 

 

 
Figure 8.   Traditional attitude indicator (screenshot of 

X-Plane TM flight simulation) 

 

The evolution of aviation from the beginning with the Wright brothers’ to modern 

aviation has brought some significant changes in the capabilities of the aircraft (Tsang & 

Vidulich, 2003). Besides the instruments, which basically remained the same, other 

factors like speed of the aircraft, especially for fighter aircraft, have changed. The 

demands on the pilots have thus increased, the workload is higher, and the task is more 

complex now.  

With the development of new technologies in flight instrument design, there has 

been a shift away from individual displays like altimeter, airspeed indicator, or turn-and-

bank indicator, towards integrated displays in which most of the information comes from 

a common source like a heads-up display (HUD) or helmet-mounted display (HMD).  
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Independent of the state-of-the-art display design, three basic issues can be 

“applied to the design and modification of primary flight and navigation instruments in 

the context of situation awareness assessment” (Andre, Wickens & Moorman, 1991): 

• Display perspective: two- vs. three-dimensional 

• Frame of reference: inside-out vs. outside-in 

• Visual display monochrome vs. color  

 

Many displays, like traffic, weather, or navigational displays, are two-dimensional 

with a “God’s eye” plan view of the earth. On the other hand, flying an aircraft is much 

more related to a three-dimensional task. In this context, three-dimensional means the use 

of “perceptual depth or distance cues to create a three-dimensional image (Wickens, 

2003).” 

An important feature of 3-D displays is the frame of reference or the viewpoint 

from which a selected part of interest is presented (Wickens, 2003). Thus the point of 

view is important for a comparison between flight instruments. Previc & Ercoline, 1999, 

describe the fundamental differences between the first two types of attitude presentation 

for an aircraft in the following way:  

• Egocentric or Immersed view point: This type is also known as “inside-
out” or “moving horizon” or “moving outside world”. The outside world 
is presented from the inside perspective of an aircraft to the outside world 
(see Figure 9, right). The human is fixed in space and the world around 
him moves. 

• Exocentric or tethered view point: This type is also known as “outside- in” 
or “moving aircraft”. The perspective is from the outside world into the 
aircraft. This type of attitude presentation is rarely used for UAVs (see 
Figure 9, left). The world is fixed and the human moves. 

• Coplaner view point: It shows a top-down lateral view and a vertical 
profile view, which can also have a side view or a back view (Wickens, 
2003). Therefore it is a 2-D display, contrary to egocentric or exocentric 
that are 3-D display designs. 
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Figure 9.   Fundamental differences of attitude representation 
for an aircraft (Previc & Ercoline, 1999) 

 

According to Clay, 1993, many aircraft accidents are due to SD problems of the 

pilot and to an additional wrong interpretation of the flight instruments. One of the major 

challenges for flight instrument display is the tremendous data flow and information 

available from all of the instruments. Additionally, the priority of recalling the 

information changes with every task. In addition, flight instruments are normally not very 

intuitive (Previc & Ercoline, 2004). On the other side, multifunctional instruments and 

the “glass cockpit” have been developed. This approach may lead to an overload of the 

pilot/ operator because more information is available, the number and complexity of 

display pages has increased. Furthermore, with an increasing number of warning signals 

like audio or visual, status displays, flight path controls, only to mention a few, the 

human processing ability may be exceeded (Mejdal & McCauley, 2001). As a result, the 

requirements for developing new display designs or improving existing display designs 

become important. This display design challenge is taken in a new direction when UAVs 

are taken into account. For this purpose, display designs have to be less abstract and 

intuitively understandable for an operator on the ground. 
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The visual impact of color is strong and has been used in simple display 

applications since before the Second World War. The advantage of color for flight 

instruments is enhancing the presentation of information and gaining user acceptance. 

Color has proven effective when a lot of information must be presented. Two different 

applications of color-coding are widely used. First, color can be used to signify quantity, 

that is, to categorize data. The airspeed indicator is an example for this type of 

application. Secondly “qualitative color displays classify data by type or condition and 

are often used to convey status information” (Stokes & Wickens, 1988). For this 

application, color can be used to facilitate selective attention. It can act as an attention 

cue for the pilot who will never be able to monitor all his displays at the same time with 

the same level of attention. Typically colors for danger, caution, or advisory information, 

are red, amber, or green, respectively (Stokes & Wickens, 1988). 

 

B. INSIDE-OUT VERSUS OUTSIDE-IN DISPLAY DESIGN 
There is a general discussion between researchers as to which type of design of 

attitude presentation human beings prefer. One very early approach to utilizing an 

exocentric instrument design was a study by Hennessy, Lintern & Collyer, 1981, that 

used an exocentric view on an aircraft model to facilitate the flight training of pilots. Four 

different visual displays were evaluated for their effectiveness in the acquisition of flight 

tasks in a flight simulator. The experimental displays were, 

(a) wide-field-of-view (160°) with horizon and checkerboard ground plane 

(b) narrow-field-of-view (48°) with horizon and checkerboard ground plane 

(c) an outside-in view of an airplane, also referred by the term 
“unconventional visual display” 

(d) a display that consisted only of traditional flight instruments. 

The participants were flight students who had to learn basic flight tasks in a 

simulator. The experiment was conducted in form of 20 trials (4 per display type). The 

researchers were particularly interested in the transfer of training in terms of how 

accurate a flight student could perform certain simple flight maneuvers. The key finding 

was that the students were able to learn flight maneuvers faster when using the outside-in 
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display. Furthermore, the results showed that it is advantageous to have an external point 

of view for perceiving and understanding flight behaviors. 

Previc & Ercoline (1999) presented additional findings on outside-in flight 

displays, claiming that they are superior at preventing roll-reversal errors during normal 

flight and in recovering from extreme flight situations. They state that “Although outside-

in attitude displays have been, and continue to be, flown throughout the world, the 

majority of military and civilian aircraft have failed to adopt this format” (Previc & 

Ercoline, 1999). One of their conclusions is that even experienced pilots do not show a 

clear advantage with an inside-out attitude display with which they have trained 

extensively. In contrast, pilots trained on an outside-in format show overwhelming 

advantage in recovering from unusual attitude. 

Self, Breun, Feldt, Perry & Ercoline, 2002, conducted a study for students in an 

introductory flight course at the U.S. Air Force Academy. They were tested on three 

different display symbologies: 

(a) moving horizon symbology (egocentric viewpoint) 

(b) moving plane symbology (exocentric viewpoint) 

(c) arc-segment attitude reference symbology. 

The researchers evaluated the time a student needs to give a roll-input in order to 

correct a certain spatial orientation of the aircraft as their main parameter of interest. This 

study found that the exocentric “outside-in” attitude display and the arc-segment attitude 

reference symbology were superior in reducing the time of roll-inputs in normal flights. 

Tsang & Vidulich, 2003b, confirmed the former findings that pilots prefer an 

exocentric or outside-in view of the world. 

 

C. PICTORIAL DISPLAY DESIGN 

Research on pictorial display design began in early 1990s when National 

Aeronautics and Space Administration (NASA) conducted a series of experiments in 

order to determine if landing and taxing approaches of commercial aircraft and Space 

Shuttles may benefit from an external view of the own aircraft. Additionally Parrish, 

Busquets, Williams & Nold, (1994) conducted an experiment to evaluate certain display 
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types, including a pictorial display design, which is also called “pathway in the sky” or 

“highway in the sky”. The objective was to evaluate and compare spatial awareness 

components of pilots using various display concepts. These four are: 

(a) conventional electronic flight information systems (EFIS) 

(b) EFIS and speech commands 

(c) pictorial “pathway in the sky” display with 70° field-of view and 

(d) a pictorial “pathway in the sky” display with 40° field-of view. 

The pictorial display was a computer rendered graphic of an out-the-window 

scene with a flight path that was displayed as green goalposts with width and height in 

correspondence with the input from the electronic landing system. The results showed 

greatly improved subjective rankings of the pictorial design in terms of reduced 

workload, effort to monitor traffic and overall ranking. The objective measurements 

reveal a significant decrease of maneuver errors in all monitored categories.  

This result is also supported by Ercoline, DeVilbiss & Evans (2004) because the 

pictorial design benefits the pilot’s spatial orientation. The configuration of the display 

appears more like the real world because a symbolic path is used to represent “the desired 

vertical and horizontal trajectory relative to Earth’s surface as opposed to command 

steering bars or a single command steering cue (Ercoline et al., 2004).” In addition, the 

pictorial display is appreciated by novices and experienced pilots. 

 

D. THE WEBER-BOX 
The WEBER-Box is a design concept for flight instruments that emphasizes a 

three-dimensional exocentric view of a virtual aircraft (Weber, 2006). He proposed in his 

thesis a new human-centric design approach for a 3D-flight instrument based on “avatar” 

concepts. Weber (2006) combined an exocentric design with pictorial metaphors of the 

current spatial orientation. By animating the entire scene, a story is being told about what 

happens during a flight maneuver. In this context, it is a “miniature abstract virtual 

world” that represents the actual spatial situation of the aircraft. The avatar “lives” in this 

virtual world. The display representing the aircraft is a 3D wire-frame model that hovers 

inside an abstract box and replicates all the basic motions of the real aircraft. The frame 

of reference is a coordinate system, consisting of X-, Y-, and Z-axes. Altitude is 
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represented by a 3D bar along the Y- axis. The aircraft’s movement relative to the ground 

is displayed by moving objects along the X-/Z- plane (see Figure 10 and 11).  

Weber (2006) conducted two experiments, which found strong evidence for 

improvement of spatial awareness and pilot’s performance in extreme flight situations. 

His findings were that the participants were able to judge the spatial orientation of their 

own aircraft about three times faster, compared to traditional flight instruments. The time 

needed to recover the aircraft from unusual attitudes improved by about 70%. 

Furthermore, he found no statistically significant differences in terms of performance 

improvement between pilots and non-pilots. Thus, operators of any experience level 

might benefit from the design of the “WEBER-Box”.  

 

 

Figure 10.   Screen shot of the WEBER-Box 
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Figure 11.   Screen shot of the WEBER-Box 
 

Studies show that maintaining spatial awareness and preventing SD is becoming 

more and more an issue when operating UAVs. Current UAV controls rely on traditional 

flight instruments, which are inherently difficult to understand and demand a high degree 

of training (McCauley & Matsangas, 2004). On the other hand, human-centric display 

design is likely to substitute or supplement traditional flight instruments in the future. The 

outside-in display formats, combined with pictorial visualization seems to be promising 

to support and improve spatial awareness for operators of UAVs. The design concept of 

the WEBER-Box combines those display principles. 
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IV. UNMANNED AERIAL VEHICLES 

A. HISTORY AND OVERVIEW 
Traditional aircraft have an important disadvantage or weakness. They have to be 

piloted by humans. Therefore there are negative consequences which have to be 

considered. In case of a crash, you not only loose equipment worth millions of dollars but 

also may loose the pilot. Other negative outcomes in military operations include the pilot 

and aircrew being taken as prisoners of war or hostages, which could have a serious 

impact on public opinion or the way a conflict has to be fought.  

Thus, the idea of developing uninhabited or unmanned aerial vehicles arose. Since 

1964 the United States Military has spent billions of dollars researching, developing and 

constructing countless types of UAVs. The United States Air Force has used UAVs for 

reconnaissance and surveillance at very long ranges up to 3,000 miles away. The core 

idea is to provide the warfighter with intelligence information and a precise delivery 

mechanism for smart area weapons, non-lethal payloads, as well as other cargo. Recently 

UAVs have also been established by the US Army and Marine Corps as tactical assets on 

the battlefield. Figure 12 provides a good impression of the actual size of a UAV Predator 

and Global Hawk compared to a Boeing 737 and therefore how far the development for 

large UAVs has already gone. 

 
Figure 12.   Sizes of UAV Predator and Global Hawk compared to a Boeing 737 

(Picture by Northrop Grumman) 
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On the other hand, the latest and additional development points into the direction 

of Micro UAVs which can be launched, for example, in urban warfare. 

 
Figure 13.   UAV Evolution – Where are we? (AUVSI, 2001) 

 

There is not only the question “Where are we?” but even more interesting is the 

question “Where are we going?” Currently under development is the Automated Aerial 

Refueling (AAR) that could demonstrate for the first time a UAV’s ability to 

autonomously maintain a permanent refueling station behind a tanker aircraft. This 

extends the range of a UAV tremendously because now only the crew in the GGS has to 

be exchanged but the UAV can continue its mission. 

Even the goals for developing and building future UAVs are determined, there are 

still concerns (see Table 1) that have to be taken care of (Thompson, 2000). 
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Table 1.   Future UCAV concerns (Thompson, 2000) 

 

B. ACCIDENTS 
High mishap rates are often cited as a deterrent to a wider adoption of UAVs into 

future force structure. Over the last five decades, investments in manned aircraft 

reliability have been made to drive equipment failures to near zero. This progress implies 

that a considerable reduction in UAV accident rates due to technical failure also can be 

obtained with reasonable investments. On the other hand, it is also likely that the human 

in the loop contributes as a main source of failure and high mishap rates for both manned 

and unmanned aviation. A significant contributor to UAV mishaps is the experience level 

of UAV operators and maintainers. 

Williams (2004) classified UAV accident data into the categories of human 

factors, aircraft, and unknown. He analyzed explicitly the data of the following UAVs: 

Hunter, Shadow, Pioneer, Predator, and Global Hawk, which are currently in use in the 

American Forces. His findings are that the involvement of human factors was high, in a 

range from 21% to 68%, depending on the type of UAV. Various human factors issues 

have been observed, including handing over a UAV from one pilot to another, launch and 

recovery, display issues, and disorientation. 

DoD (2005) compared in its roadmap 2005 – 2030 the UAV mishap rate with the 

mishap rate of the F-16 (see Figure 14) of class A mishaps. These are the mishaps 

resulting in the loss of the aircraft, human life, or causing $1,000,000 in damage. It 
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illustrates the mishap rate after similar numbers of flying hours have been accumulated. 

This Figure shows significantly that the mishap rate of today’s UAV is comparable with 

the mishap rate of early manned military aircraft. 

 
Figure 14.   Mishap rate comparison (DoD, 2005) 

 

An additional approach is the vulnerability of UAVs in combat situations. Many 

of the current UAVs are vulnerable to different air defense systems, which of course 

depends on the altitude and the speed of the UAV. Certainly this applies to tactical UAVs 

up to Medium-Altitude, Long-Endurance (MALE) UAVs like the Predator. Anti-aircraft 

artillery (AAA), shoulder-fired man portable systems (MANPADS), and radar directed 

low medium and high altitude surface to air missiles can all be quite lethal to UAVs 

within their range. Currently the concept of operations calls for air superiority and the 

elimination of the air defense threats before a UAV is sent into this area. In the future, the 

concept of operations could be extended if active countermeasures were installed on 

UAVs, which would enable their mission to be extended to surveillance prior to a 

conflict. 
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C. UAV SYSTEM EXAMPLE: PREDATOR 
Smaller in size compared to its larger brother Global Hawk, the 27-foot-long 

UAV Predator is much cheaper, $4.5 million each. As a result, it may be worth the risk of 

being sighted and shot-down to fly a Predator at relatively low altitudes (25,000 feet and 

below). 

Predators were first deployed for reconnaissance and surveillance operations by 

the US military during the 1995 civil war in Bosnia. They are now far more extensively 

used by the USAF in the operations such as Afghanistan. 

The Predator is a medium-altitude, long-endurance remotely piloted aircraft. Its 

primary mission is interdiction and conducting armed reconnaissance against critical, 

perishable targets. When it is not actively pursuing its primary mission, it acts as the Joint 

Forces Air Component Commander-owned theater asset for reconnaissance, surveillance 

and target acquisition in support of the Joint Forces Commander. 

The basic crew is one air vehicle operator (AVO) or pilot and two sensor 

operators. They fly the aircraft from inside the ground control station via a line-of-sight 

data link or a satellite data link for beyond line-of-sight flight (see Figure 15). 

 
Figure 15.   Data and satellite link of the Predator (Cooter, 2001) 
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The Predator is equipped with a color camera in the nose (generally used by the 

pilot for flight control), a day variable-aperture TV camera, a variable-aperture infrared 

(IR) camera (for low light/night), and a synthetic aperture radar (SAR) for looking 

through smoke, clouds or haze. The cameras produce full motion video while the SAR 

produces still-frame radar images. Thus, it can produce near-real-time multi-sensor 

imagery and intelligence. The latest development of the RQ/MQ-1 is equipped with 

lasers, targeting systems, and a pair of hellfire missiles. The following model “MQ-9 is 

intended to fly higher and faster, provide more power, and carry larger payloads than the 

original Predator system. It is intended to provide a more robust airframe, using a 

conventional turbo-prop engine and redundant avionics. MQ-9 will be used primarily in 

an armed reconnaissance (“hunter-killer”) role and will perform reconnaissance, 

surveillance, and target acquisition (RSTA) as a secondary role” (Christie, 2003). 

One has to understand the Predator as a complex system which includes 

• 4 x Air Vehicles 

  
Figure 16.   UAV Predator (Cooter, 2001) 

 
• 1 x Ground Control Station 

  
Figure 17.   Predator Ground Control Station – outside (Cooter, 2001) 
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Figure 18.   Predator Ground Control Station – inside (Cooter, 2001) 

 

• 1 x Predator Primary SATCOM Link 

  
Figure 19.   Predator Primary SATCOM Link (Cooter, 2001) 

 

For operating the Predator a HUD is being used. Figure 20 shows the current one 

which will be replaced in the future by a more advanced IHUD (see Figure 21). 
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Figure 20.   Heads-Up-Display Predator (Ball et al., 2002) 

 

 
Figure 21.   Heads-Up-Display Predator – IHUD (Guy, 2007c) 

 

The Predator HUD can be considered as one of the traditional flight instruments 

which we want to compare with the new prototype display design in the present research. 
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Next to the HUD/ IHUD the pilot uses the front color camera for operating the 

Predator (see Figure 22 and Figure 23). 

 
Figure 22.   View from the color camera in the nose 

of the Predator (Guy, 2007b) 

 

 
Figure 23.   View from the color camera in the nose of the  

Predator during recovery (Guy, 2007b) 
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D. GROUND CONTROL STATION 
The ground control station (GCS) is the control center of any UAV system. The 

main tasks that have to be accomplished are data processing of the incoming data and 

sending control signals to the UAV. Thus three main features will be executed in the 

GCS: 

• Mission planning: The purpose of mission planning is to analyze available 
information and develop a flight plan. This involves identifying and 
prioritizing targets, and examining sensor capabilities relative to the 
chosen targets. Weather analysis also is common. 

• Mission control: Mission control is responsible when the aircraft is on the 
ground, when it is getting launched, and during the mission, for the 
navigation and possible mid-flight rerouting. It is also responsible for 
monitoring and controlling of any payload, and for recovering the aircraft 
if an unusual attitude occurs. 

• Data manipulation: Data manipulation is responsible for processing, 
exploiting, and archiving of data during the flight and / or after the flight 
(Anderson, 2002). 

 

The Predator GCS provides command and control of the air vehicle through the 

pilot station using stick and rudder control. The sensor operators monitor the flow of 

information from the UAV. Their sources of information are the TV camera, the infrared 

camera, and the onboard radar. Depending on the weather conditions, advantageously the 

radar can be operated simultaneously with either the TV camera or the infrared camera. 

For communication purposes, a C-band line-of-sight data link and for beyond-line-of-

sight a Ku-band satellite data link are used (Anderson, 2002). 

The following pictures give an idea about the inside of a GCS. For comparison 

reasons, not only the GCS of the Predator will be displayed, but also several others. 
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Figure 24.   GCS Predator - Inside view (Cooter, 2006) 

 

 
Figure 25.   GCS Predator - Inside view 
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Figure 26.   GCS Predator - Inside view (Cooter, 2006) 

 

 
Figure 27.   GCS Pioneer – Inside view 
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Figure 28.   GCS Hunter – Inside view 

 

 
Figure 29.   GCS of German System KZO – Inside view 
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V. METHOD 

A. METHODOLOGY 

1. Experiment Goals and Purpose 
The goals of this study are to evaluate the strengths and weaknesses of a new 

proposed display design, called the WEBER-Box, compared to the traditional flight 

instruments. 

 

2. Research Questions 
The study is limited in its scope and assets. We wanted to answer the following 

questions: 

a) Will the new display design help the pilot to recognize the current aircraft 
attitude? 

b) Will the new display design help the pilot to differentiate between a usual 
and unusual attitude? 

c) Will the new design help to prevent misperception of an unusual attitude 
when the UAV is not in an unusual attitude?  

 

Answers to these questions reveal whether the new display design helps to 

• recognize the current attitude at least as well as the traditional display 
design,  

• differentiate between a usual and an unusual attitude at least as well as the 
traditional design, and 

• determine whether the new design prevents misjudging an unusual 
attitude. 

 

3. Constraints and Assumptions 
Since the experiment involved human participants, the plan for the experiment 

was submitted to the Institutional Review Board, which approved the experiment (see 

Appendix C). 
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The major constraint was the use of a digital hand stopwatch, type SPORTLINE®. 

Therefore the accuracy of measuring the time to judge the current attitude may have been 

decreased, but this possible disadvantage was constant across conditions and, presumably 

across data points (1,120).  

The major assumption was about the definition of unusual attitude. According to 

Air Force Instruction 11-217 “an unusual attitude is an aircraft attitude occurring 

inadvertently”. Since this is very broad, we followed a definition according to industry 

…”as one where pitch unintentionally exceeds 25 degrees nose up or 10 degrees nose 

down, bank angle unintentionally exceeds 45 degrees, and the airspeed is inappropriate 

for the conditions” (Guy, 2007a). 

 

4. Technical Equipment 
The experiment took place at the Naval Postgraduate School, Monterey, 

California, Watkins Building, room 212B. 

Two workstations were used. Workstation one was for instruction and training 

while workstation two was established for the underlying experiment. 

Workstation one: 

The computer-generated images were displayed on a 19” computer monitor with a 

1024 x 768 pixel resolution. The pictures of the flight situations were generated by 

screenshots of the commercial flight simulator software X-Plane™, version 7.13 and 

version 8.40 and by screenshots of the WEBER-Box program, respectively. The pictures 

were stored in a PowerPoint™ slideshow (see Appendix D) to ensure that every 

participant saw the different attitudes in the same order. 

Workstation two: 

The computer-generated images were displayed on a 19” computer monitors with 

a 1024 x 768 pixel resolution. The second screen was located on top of each other similar 

to the ground station of a Predator. It provided during the duration of the experiment the 

definition of unusual attitude. 
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The simulation of the flight situations were generated by the commercial flight 

simulator software X-Plane™, version 7.13 and version 8.40 and by the WEBER-Box 

program, respectively. The predefined simulations of usual and unusual attitude will be 

stored in Camtasia Studio™ from TechSmith to ensure that every participant saw exactly 

the same the different attitudes in his randomly assigned order. 

 

5. Data Collection Methodology 
Several types of data were collected during the experiment. 

First, demographic data were collected by a pre-experiment questionnaire. 

Secondly data were collected during the experiment. These were data for correct/ 

incorrect responses, and the measured time each participant needed to judge the current 

attitude. In addition, the use of subjective self-assessment provided a scale of five 

judgments in every questionnaire.  

In summary, a “repeated measures” design was used in which all the participants 

were exposed to all the instrument setups and all the sub-experiments. The order of 

presentation of the two displays and the color-coding was pseudo-randomized (see 

Appendix J and K). This procedure ensured that learning effects would be 

counterbalanced over the experiment. 

 

6. Data Analysis Methodology 
The data was hand recorded by using a template (see Appendix K). The 

participant judged the current attitude and responded by saying “Usual attitude” or 

“Unusual attitude”. The experimenter measured the time and transferred the time into the 

template together with the participants’ verbal response of his judgment. 

The data then were analyzed by commercial software Excel 2003 and SPSS 13.0 

for Windows. Methods that have been used were Analysis of Variance and the paired t-

test. The statistical analysis concentrated on the differences between the measurements 

depending on the experimental condition: display type (traditional or WEBER-Box) and 

color coding (none or yellow). 
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Two questionnaires were handed out. The pre-experiment questionnaire provided 

demographic information and, for pilots, aviation background. The post-experiment 

questionnaire was helpful as a secondary method for determining the effects of the 

different variables display design and color/ no color, and to analyze the relationship 

between subjective and quantitative data. 

 

B. EXPERIMENTAL DESIGN 

1. Basic Experimental Design 
The experiment was designed to compare the correct responses of the judgment of 

usual or unusual attitude while changing the variables display design and color coding or 

not. Therefore, it was a randomized “within subjects” design because every participant 

received the same treatment. Since two groups, pilots and non-pilots, were involved in 

the experiment, their comparison was “between subjects.” 

The dependent variables were the outcome of correct response and the time a 

participant needed to judge the attitude. Independent variables were the display design 

and the factor color or no color. 

Each participant was told at the beginning that his duty station is the ground 

control station of a Predator. 

 

2. Experimental Procedure 
The overall experiment was subdivided into four phases. 

Phase one – Pre-Paperwork: 

The participant filled out the necessary paperwork, including a consent form, a 

privacy act statement, a minimal-risk information form, and an initial/ demographic 

questionnaire. 
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Phase two – Introduction and Training 

Then the participant was introduced to the experiment. In a PowerPoint 

presentation he received information about the UAV, his task as an operator of the UAV, 

and details about usual and unusual attitude since this was the key part of the underlying 

experiment. The participant also watched a 2-minute video of the work as an operator in 

the ground control station of the Predator. 

This pre-experimental part, phases one and two, took approximately 25 minutes. 

Phase three – Experiment 

After completion of introduction and training, the participant started with the first 

experimental sub-task, given a particular simulation setup, that is, with or without the 

new instrument. Each of the 14 trials of the sub-experiment was scheduled for 10 

seconds. Two monitors were placed on top of each other to create an environment like a 

ground station of a UAV. The top monitor was only used for displaying the definition of 

unsual attitude. The first two trials in each combination always were practice trials. 

The experimenter started the prepared simulation of 19 different flight simulations 

that ended in a usual or unusual attitude. Each simulation appeared for ten seconds. This 

was also the amount of time given to the participant to judge the attitude. After ten 

seconds, the next attitude appeared automatically. One half of the trails were created as 

usual attitude while the other half as unusual attitude. 

After accomplishing the first two blocks of trials, the participant was allowed a 5-

minute break if desired. 

Then the participant started the second sub-experimental task. 
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Figure 30.   Experimental setup 

 

In summary, all the participants were exposed to all the instrument setups and all 

the sub-experiments. Each participant was confronted with seven trails of usual attitude 

with traditional design and seven trails of unusual attitude with the traditional design and, 

likewise with the new design (see Figure 30). 

Phase four – Post-Paperwork 

When finished, the participant was asked to fill out the post-experimental 

questionnaire and support the experiment with his suggestions and comments. This 

completed the experimental session. 

 

C. PILOT STUDY ONE 
The first pilot study was conducted with three participants to test the procedures, 

apparatus, and tasks. The setup of this pilot study differed from the later conducted 

experiment. It was a dynamic environment with a flight simulation that stopped after 120 

seconds and the participant had to judge the current attitude. For this judgment he was 

given ten seconds. There was also only the comparison between the traditional display 

design without color coding and the new display design with color coding. Two of the 

three participants claimed that this was a disadvantageous setup due to the outstanding 

support the new display design received. The recommendations were to extend the setup 

and provide both of the display design types with color and compare the results. 
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D. PILOT STUDY TWO 
Therefore another pilot study had to be conducted according to the above 

mentioned recommendations. Again three participants tested the procedures, apparatus, 

and tasks. The new setup contained now both display designs, each with and without 

color coding. We also changed the settings contrary to the former pilot study to a static 

environment with a presentation mode where the participant had to judge the attitude in a 

maximum time of ten seconds. If he was unable to judge in this period, it was counted as 

incorrect. All of the participants were tested on each of the four combinations. The pilot 

study demonstrated that every participant was able to judge the current attitude and the 

given time of ten seconds sufficed.  

 

E. PARTICIPANTS 
The participants were randomly assigned on a volunteer basis from students and 

faculty of NPS. The study involved 20 participants, evenly partitioned into ten pilots and 

ten non-pilots. Eight of the pilots were jet pilots and two were helicopter pilots with an 

average of 1,348 flight hours. Therefore the group of pilots can be considered as 

participants with a strong aviation background and a high flight experience. The mean 

age of the pilots was 36 in the range from 28 to 42. The mean age of the non-pilots was 

34 with a range from 28 to 42. 
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VI. DATA ANALYSIS 

A. HYPOTHESIS 
Inferential testing techniques enable the researcher to decide between the null 

hypothesis and the alternative hypothesis. Devore, 2004, defines the null hypothesis, 

“denoted by α , as the claim that is initially assumed to be true.” The alternative or 

secondary hypothesis, “denoted by aH , is the assertion that is contradictory to 0H . The 

null hypothesis will be rejected in favour of the alternative hypothesis only if sample 

evidence suggests that 0H  is false. If the sample does not strongly contradict 0H , we will 

continue to accept the null hypothesis. The two possible conclusions from a hypothesis-

testing analysis are then reject 0H  or fail to reject 0H ” (Devore, 2004). 

A test procedure is specified by the following: 

• A test statistic, a function of the sample data on which the decision (reject 
0H  or do not reject 0H ) is to be based. 

• A rejection region, the set of all statistic values for which 0H  will be 
rejected. 

The null hypothesis 0H  will then be rejected if and only if the observed or 

computed test statistic value falls in the rejection region (Devore, 2004). Evidence to 

reject a null hypothesis 0H  is given if the p-value is small enough (the probability that a 

difference of the magnitude observed may have occurred by chance).  

Since we were testing two different measures of effectiveness (MOE), two 

different null hypotheses were stated along with their corresponding alternative 

hypothesis. Our dependent variables, or MOEs, were the “probability of correct 

response” and its corresponding “time of response”. 

 

1. MOE “Probability of Correct Response” 

a. Null Hypothesis 

 0H : no difference between traditional and prototype display design 
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b. Alternative Hypothesis 

 aH : prototype display design provides a higher percentage of correct 

response 

Null or alternative hypotheses can be explored by using the results of the binary 

data (1 for correct response and 0 for incorrect response) of the experiment when the test 

participant had to judge the current attitude.  

 

2. MOE “Time of Response” 

a. Null Hypothesis 

 0H : no difference in response time between traditional and prototype 

display design 

 

b. Alternative Hypothesis 

 aH : prototype display enables to respond correctly in a shorter time 

The second null or alternative hypotheses can be explored by using the results of 

the time measurement in seconds and milliseconds of each judgement task. The time each 

participant required to judge his attitude, indicates how fast he can build his model of the 

current spatial situation and therefore being able to start a recovery if necessary. Each 

participant is tested on the traditional and the prototype display design. The order of 

presentation was counterbalanced. The data provides an indication about which display 

design enables a person to assess an aircraft attitude more rapidly. 

In addition, the post-experiment questionnaire provides us with feedback for both 

measures of effectiveness. Assuming a faster response to the judgement task when using 

the prototype display design, this should be reflected by selecting an answer of “border 

line”, “somewhat more” or “much more” with regards to better awareness of spatial 

orientation. 

Additionally, an answer to the question of the influence of a color coded support 

for pitch and/ or roll, either for the traditional or the prototype display design, can be 
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extracted from the questionnaire. By choosing any answer above “border line”, we can 

assume that the participant favoured an additional color support. 

 

3. Baseline Determination 
Before starting with any experiment, it is necessary to evaluate the number of 

participants necessary to achieve a statistically significant outcome.  

Kanji (1999) provides a general overview of the relation between a true or false 

hypothesis and when to reject or not to reject this hypothesis. The two ways of making 

mistakes when performing a hypothesis test are type I and type II errors. Type I errors 

represent mistakenly rejecting 0H , when 0H  is true. On the other hand, an error of type 

II occurs when 0H  is false and it is not rejected. 

The goal is to avoid type I and type II errors and make the correct decision about 

accepting or rejecting the null hypothesis.  

 

  What is true in the population? 

  Treatments have 
no effect 

Treatments have 
an effect 

 
No effect 

Correct decision 

(p = 1 – β ) 

Type II error 

(p = 1nt
∗
− ) 

 
Treatment effect 

Type I error 

(p = α ) 

Correct decision 

(p = 1 – β ) 

    

 

Power 

Table 2.   Outcomes of statistical tests (Murphy & Myors, 2004) 

 

The power of a statistical test is defined as the probability of rejecting the null 

hypothesis, 0H , when the alternative hypothesis is true (Montgomery & Runger, 2007). 

Conclusion 
reached in a 
study 
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Instead of simply calculating the level of power, it is also possible to determine 

the sample size to achieve specific levels of power. By convention, it is necessary to 

achieve at least a power of 0.05, otherwise the probability is greater than .05 that a Type I 

error will occur, i.e., failing to reject 0H  when 0H  is false. Achieving a power greater 

than 0.08 is always desirable (Murphy & Myors, 2004). 

We used a power analysis and determination of the sample size according to 

DeVeaux et al., 2005. By regrouping the formula 

  *
1n

sME t
n−= ⋅  

 from: 
*

1nt sn
ME
− ⋅=  

 to: 
2*

1nt sn
ME
−⎛ ⎞⋅

= ⎜ ⎟
⎝ ⎠

 

it is possible to determine the sample size. 

Explanation: ME: margin of error 

  extent of an interval on either side 

 1nt
∗
− : confidence interval 

  an interval estimate for a population parameter 

 s: standard error 

  estimate of the standard deviation of a sampling 
distribution 

  calculated by the product of p x q with p as the probability 
that the observed statistic value could occur and q as the 
probability that the observed statistic value could not occur 

 

To determine an appropriate sample size, we made the following assumptions. 

The level of significance will be α  = 0.05 and the probability of 90% that the statistic 

value will occur. The results shown in Table 2 were calculated by using the above 

displayed formula in a spreadsheet in Microsoft Excel 2003. 
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ME P Q Z  Sample size n CI 

0.03 0.9 0.1 1.282 14.79 80%
0.04 0.9 0.1 1.645 13.70 90%
0.04 0.9 0.1 1.96 19.45 95%
0.05 0.9 0.1 2.326 17.53 98%
0.05 0.9 0.1 2.576 21.50 99%

Table 3.   Number of proposed participants 

 

Therefore we designed the experiment for 20 participants, assuming a margin of 

error of 0.04 with a p-value of 90% using a confidence interval of 95%. Since we decided 

to choose a level of significance of α  = 0.05, 0H  can be rejected if the p-value is less 

than 0.05. 

 

B. GENERAL DATA ANALYSIS 

1. General Data Description 
During the experiment 1,120 data points (20 participants x 4 trial x 14 tests = 

1,120) in different categories were collected. The following software was used for the 

data analysis: Microsoft Excel 2003 and SPSS 13.0 for Windows. These programs have 

also been used for the graphical output of the analysis. 

The data categories were: 

1) Initial Questionnaire: The questionnaire was also used to obtain 
demographic data like age in years and flight experience in hours. 

2) Judgement of the current attitude: The answer to the task of judging the 
current attitude as correct or incorrect. 

3) Judgement Time: The time the participant needed to judge the current 
attitude in sec. 

2) Post Experiment Questionnaire: The subjective assessment of the 
experiment. 
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2. Demographic Data 

a. Age 
Both pilots and non-pilots had a similar mean age. The standard deviation 

of the non-pilots was a little higher due to more participants of 40 years and older. The 

detailed statistics are displayed in Table 4. 

 

 Mean STD Minimum Maximum 
Pilots 35.50 3.85 28 42 
Non-pilots 34.00 4.77 28 42 
Total 34.75 4.40 28 42 

Table 4.   Statistics on participants’ age 

 

b. Flight Experience 

ID-
Participant

Pilot      
(1 / 0)

Flight-
Hours

Mean 
Flight-
Hours

STD

001 1 80.00
002 1 20.00
003 1 2000.00
004 1 2500.00
005 1 1400.00
006 1 2400.00
007 1 10.00
008 1 1971.00
101 1 2000.00
102 1 1100.00 1348.10 943.29  

Table 5.   Flight-Hours – Raw data 
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Figure 31.   Chart of individual flight-hours 
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Seven pilots out of the total of ten pilots had more than 1,000 flight hours 

and four out of these seven pilots had more than 2,000 flight hours, with one participant 

very close to the 2,000 flight hour barrier, one can consider the group of pilots as 

experienced. Most of them had some experience with SD during their flying career. Table 

6 provides the descriptive statistics of the pilot’s flight experience. 

 

 Mean STD Minimum Maximum 
Flight experience 1,348.10 943.29 10 2,500 

Table 6.   Statistics on pilot’s flight experience 

 

3. General Statistical Methodology 
We tested each participant on the factors “display design” and “color support/ no 

color support.” In addition, there were two types of participants, pilots and non-pilots, 

yielding a full factorial design with 32 8=  factor-level combinations. Our measures of 

effectiveness were correct answer of aircraft attitude (usual or unusual attitude) and the 

time a participant needed to make that judgment (see Figure 32 and Figure 33).  

Analysis of variance (ANOVA) was used to test the effects of the independent 

variables on the correct judgment of attitude and the time to respond. 
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Figure 32.   Combination and evaluation of correct response 

 

 
Figure 33.   Combination and evaluation of time to judge 
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4. Baseline Comparison 

The basic data are displayed in the middle section of Figure 32 and Figure 33 and 

combined in Table 7 with the raw data.  

ID-
Participant

Pilot      
(1 / 0)

prob. correct 
response 

(Traditional + 
Non-Color)

mean time 
(Traditional + 

Non-Color)

prob. correct 
response 

(Traditional + 
Color)

mean time 
(Traditional + 

Color)

prob. correct 
response 

(Prototype + 
Non-Color)

mean time 
(Prototype + 
Non-Color)

prob. correct 
response 

(Prototype + 
Color)

mean time 
(Prototype + 

Color)

001 1 1.00 1.44 1.00 0.66 0.93 0.91 1.00 0.68
002 1 0.57 3.07 1.00 1.28 1.00 2.22 1.00 1.31
003 1 0.86 1.74 0.79 2.32 1.00 1.54 1.00 1.45
004 1 1.00 1.68 1.00 1.19 1.00 1.06 1.00 1.80
005 1 0.86 2.02 1.00 0.77 1.00 1.30 1.00 0.72
006 1 0.93 1.91 1.00 1.77 1.00 1.05 1.00 1.15
007 1 0.86 1.44 1.00 1.63 1.00 1.07 1.00 1.03
008 1 1.00 1.70 1.00 1.74 1.00 1.93 1.00 1.20
101 1 1.00 1.62 1.00 2.28 1.00 1.40 1.00 0.89
102 1 1.00 2.29 1.00 2.02 1.00 2.00 1.00 1.36
201 0 1.00 2.31 1.00 1.74 1.00 1.83 1.00 1.04
202 0 0.93 1.46 0.86 1.88 0.93 1.25 1.00 0.83
203 0 0.86 2.02 1.00 0.88 1.00 1.57 1.00 0.96
204 0 0.86 2.22 0.93 1.22 0.86 1.79 1.00 0.84
205 0 1.00 3.06 1.00 3.27 1.00 2.20 1.00 1.84
206 0 0.71 4.89 1.00 0.98 1.00 1.74 1.00 1.19
207 0 0.93 2.40 1.00 1.10 1.00 1.83 1.00 0.79
208 0 0.86 3.02 1.00 0.96 1.00 1.38 1.00 0.89
209 0 1.00 2.83 1.00 1.03 1.00 2.21 1.00 0.90
210 0 0.86 3.85 1.00 1.03 0.93 2.19 1.00 0.91

MEAN: 0.90 2.35 0.98 1.49 0.98 1.62 1.00 1.09

STD: 0.11 0.87 0.05 0.63 0.04 0.42 0.00 0.32  

Table 7.   Baseline comparison – Raw data 

 

C. ANALYSIS OF VARIANCE 

1. General Linear Model 
Analysis of variance (ANOVA) is an analysis method for testing equality of 

means across three or more treatment groups. In our case we used a one-way ANOVA for 

repeated measures. On one hand we have a “within subjects” (see Table 8 and Table 9) 

design because every participant received the same treatment. 
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Within-Subjects Factors

Measure: MEASURE_1

prob.
correctrespo
nse
Traditional
NonColor
prob.
correctrespo
nse
Traditional
Color
prob.
correctrespo
nse
Prototype
NonColor
prob.
correctrespo
nse
Prototype
Color

color
1

2

1

2

display
1

2

Dependent
Variable

 

Table 8.   Within subjects for probability of correct response 

 

Within-Subjects Factors

Measure: MEASURE_1

meantime
Traditional
NonColor
meantime
Traditional
Color
meantime
Prototype
NonColor
meantime
Prototype
Color

color
1

2

1

2

display
1

2

Dependent
Variable

 

Table 9.   Within subjects for mean time 
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The two groups of participants, pilots and non-pilots, were a “between subjects” 

factor (see Table 10). 

Between-Subjects Factors

10
10

0
1

Pilot        
(1 / 0)

N

 

Table 10.   Between subjects 

 

Therefore we are able to assess the effect of display design or color versus the 

status as pilot or non-pilot. 

 

2. ANOVA for Probability of Correct Response 
The ANOVA for probability of correct response gave us the statistical output 

shown in Table 11. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

.049 1 .049 11.130 .004

.000 1 .000 .056 .816

.079 18 .004

.042 1 .042 10.805 .004

.001 1 .001 .250 .623

.071 18 .004

.016 1 .016 3.540 .076

.000 1 .000 .053 .820

.083 18 .005

color

Linear
Linear
Linear
Linear
Linear
Linear

display
Linear
Linear
Linear

Linear
Linear
Linear

Source
display
display * Pilot10
Error(display)
color
color * Pilot10
Error(color)
display * color
display * color * Pilot10
Error(display*color)

Type III Sum
of Squares df Mean Square F Sig.

 

Table 11.   Test of within-subjects contrasts for probability of correct response 

 

The effect of display design (traditional or Weber Box) was highly significant, F 

= 11.13, p = 0.004. Likewise, the effect of color coding was significant, F = 10.81, p = 

.004. There were no significant two-way interactions between display design and color (p 

= 0.076), display design and pilot/ no pilot (p = 0.816), or color and pilot/ no pilot (p = 

0.623). Similarly, the three way interaction between display, color, and pilot was not 
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significant (p = 0.820). Figure 34 shows the nearly-significant interaction between 

display type and color. It can also be seen in the figure that response accuracy was higher 

for the WEBER Box than for the traditional display, both with and without color. 

 
Figure 34.   Interactions of display design and color 

 

Participants using the WEBER-Box reached a probability of correct response of 

98% without color coding and 100% with color coding. These results indicate that high 

accuracy in judging attitude is achieved using the WEBER Box. 

 

a. T-Test: Traditional Design Versus Color 

In support of the ANOVA findings, a t-test was performed to determine 

whether color coding had an effect on response accuracy with the traditional display (see 

Table 12). The significant result, p < .05, indicates that response accuracy using the 

traditional display was better with color coding than without it. The boxplot also supports 

this conclusion (see Figure 35). 
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  prob. correct response 
(Traditional without color) 

prob. correct response 
(Traditional with color) 

 Mean 0.9045 0.979 
 Variance 0.012552368 0.003146316 
 Observations 20 20 
 P(T<=t) one-tail 0.005702026  
 P(T<=t) two-tail 0.011404052  

Table 12.   Analysis in the probability of correct response between traditional 
design without color vs. with color 

 

prob. correct response (Traditional + Color)prob. correct response (Traditional + Non-Color)
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Figure 35.   Graphical output of the analysis in the probability of  

correct response between traditional design 
without color vs. with color 

 

3. ANOVA for Response Time 
The ANOVA for response time resulted in the statistical output shown in Table 

13. 
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Tests of Within-Subjects Contrasts

Measure: MEASURE_1

6.311 1 6.311 58.699 .000
.374 1 .374 3.479 .079

1.935 18 .108
9.737 1 9.737 23.978 .000
3.054 1 3.054 7.520 .013
7.310 18 .406

.533 1 .533 1.951 .179

.422 1 .422 1.544 .230
4.918 18 .273

color

Linear
Linear
Linear
Linear
Linear
Linear

display
Linear
Linear
Linear

Linear
Linear
Linear

Source
display
display * Pilot10
Error(display)
color
color * Pilot10
Error(color)
display * color
display * color * Pilot10
Error(display*color)

Type III Sum
of Squares df Mean Square F Sig.

 

Table 13.   Test of within-subjects contrasts for mean response time 

 

Display type (traditional versus WEBER Box) had a highly significant effect on 

mean response time, F = 58.70, p < 001. Similarly, color coding had a highly significant 

effect on response time, F = 23.98, p < .001. 

The two way interaction of display type and pilot/ non-pilot did not reach 

significance, F = 3.48, p = .079, nor did the interaction of display type and color coding, 

F = 1.95, p = .179. On the other hand, the interaction of color coding and pilot/ non-pilot 

was significant, F = 7.52, p < .05. The three way interaction of display type, color coding, 

and pilot was not significant, F = 1.54, p = .230. 

A graphical representation of display type and color coding is given in Figure 36. 

It can be seen in the figure that response times were shorter with the new display design 

(WEBER Box) than with the traditional instrument design, and that held true for both 

color coded and no color coded displays.  
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Figure 36.   Non-significant interaction between display design and color 

 

The mean time decreased when switching from the traditional display to the 

WEBER-Box. Adding color to the displays made this decrease even more obvious.  

Figure 37 shows the significant interaction between display design and pilot/ non-

pilot. Both pilots and non-pilots responded more quickly with the WEBER Box than with 

the traditional instrument design, but the advantage of the WEBER Box was greater for 

the non-pilots. This result is not surprising because pilots have considerable experience 

with the traditional display design, whereas the non-pilots were quite slow in responding 

to the traditional display.  
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Figure 37.   Interactions between color and pilots 

 

This graphical outcome shows at once that the non-pilots profited most from the 

WEBER-Box. Both, pilots and non-pilots, could decrease their mean response time when 

tested on the WEBER-Box. But the non-pilots mean response time dropped in such a 

significant way even underneath the pilots value when using the WEBER-Box. 

This is an additional proof of the superiority of the WEBER-Box. On the other 

hand there is room fur further investigations, why the pilots didn’t benefit as much from 

the WEBER-Box as the non-pilots. 

 

a. T-Test: Pilot Versus Display Design 
In support of the ANOVA findings a t-test was performed to determine 

whether display design had an effect for mean response time on pilots (see Table 14). The 
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significant result, p < .05, indicates that the mean response time of the pilots using the 

WEBER-Box was better than with the traditional design. The boxplot also supports this 

conclusion (see Figure 38). 

 

  mean time 
(Pilot with trad. design) 

mean time 
(Pilot with WEBER-Box) 

 Mean 1.729 1.329 
 Variance 0.136054444 0.123676667 
 Observations 10 10 
 P(T<=t) one-tail 0.011579295  
 P(T<=t) two-tail 0.023158589  

Table 14.   Analysis of the response time between pilots with the  
traditional design vs. the WEBER-Box 

 

 
Figure 38.   Graphical output of the analysis of the mean response time 

for pilots with the traditional design 
vs. the WEBER-Box 

 

In support of the ANOVA findings another t-test was performed to determine 

whether display design had an effect for mean response time for non-pilots (see Table 
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15). The significant result, p < .05, indicates that the mean response time of the non-pilots 

using the WEBER-Box was much better than with the traditional design. The boxplot 

also supports this finding (see Figure 39). 

 

  mean time 
(Non-Pilot with trad. 

design) 

mean time 
(Non-Pilot with WEBER-

Box) 
 Mean 2.109 1.407 
 Variance 0.32061 0.074445556 
 Observations 10 10 
 P(T<=t) one-tail 0.001190929  
 P(T<=t) two-tail 0.002381859  

Table 15.   Analysis of the response time for non-pilots with the  
traditional design vs. the WEBER-Box 

 

 
Figure 39.   Graphical output of the mean response time (sec) 

for non-pilots with the traditional design 
vs. the WEBER-Box 
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b. T-Test: Pilot Versus Color 

In support of the ANOVA findings a t-test was performed to determine 

whether color had an effect on response time for pilots (see Table 16). The significant 

result, p < .05, indicates that the mean response time of the pilots using the WEBER-Box 

was faster than with the traditional design. The boxplot also supports this finding (see 

Figure 40). 

 

  mean time 
(Non-Pilot without color) 

mean time 
(Pilot with color) 

 Mean 2.305 1.214 
 Variance 0.336538889 0.249982222 
 Observations 10 10 
 P(T<=t) one-tail 0.000137018  
 P(T<=t) two-tail 0.000274036  

Table 16.   Analysis of the response time for non-pilots with 
color vs. without color 

 

 
Figure 40.   Graphical output of the response time (sec) of non-pilots 

with color vs. without color 
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D. POST-EXPERIMENT QUESTIONNAIRE 

After the primary data collection was finished, each participant was asked to fill 

out the post-experiment questionnaire. This questionnaire served as an indicator of the 

attitude of the participants toward the two different display designs and the difference of 

a colored-coded support. It also provided subjective data in relation to the correct/ 

incorrect answers and the time each participant needed to judge the various aircraft 

attitudes. The raw data from the questionnaire can be seen in Table 17. 

Difficulty of 
Task

Difficulty 
judging by 
Traditional

Difficulty 
judging by 
Prototype

Benefits of 
Color-coding

Better aware 
with 

Prototype 
without Color-

Coding

Better aware 
with 

Prototype 
with  Color-

Coding

Prototype in-
/ decrease 

monitoring 
demands

ID-Participant 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5 1 - 5
001 3.00 3.00 2.00 1.00 4.00 3.00 2.00
002 3.00 4.00 2.00 1.00 4.00 4.00 2.00
003 2.00 2.00 2.00 1.00 3.00 4.00 2.00
004 1.00 2.00 1.00 2.00 4.00 4.00 2.00
005 4.00 4.00 2.00 2.00 5.00 4.00 1.00
006 1.00 1.00 1.00 1.00 3.00 3.00 3.00
007 2.00 3.00 1.00 1.00 4.00 5.00 2.00
008 1.00 2.00 2.00 1.00 1.00 1.00 2.00
101 2.00 3.00 2.00 1.00 4.00 4.00 2.00
102 1.00 2.00 2.00 1.00 3.00 3.00 4.00
201 2.00 3.00 1.00 1.00 5.00 4.00 1.00
202 4.00 5.00 4.00 1.00 4.00 4.00 3.00
203 3.00 3.00 3.00 1.00 5.00 3.00 3.00
204 2.00 4.00 1.00 1.00 5.00 5.00 1.00
205 3.00 4.00 2.00 1.00 4.00 4.00 3.00
206 2.00 4.00 1.00 1.00 5.00 5.00 5.00
207 3.00 4.00 2.00 1.00 4.00 5.00 1.00
208 2.00 4.00 1.00 1.00 5.00 4.00 4.00
209 2.00 3.00 3.00 1.00 5.00 3.00 2.00
210 3.00 3.00 5.00 1.00 2.00 5.00 5.00  

Table 17.   Post-Experiment Questionnaire – Raw data 

 

We calculated three different types of percentages, as shown below, to help reveal 

the participants’ opinions: 
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Figure 41.   Post questionnaire calculation  

 

Then we transferred these percentages again into the questionnaire (see Table 18). 

By doing it this way, we received a first synopsis of the summarized subjective 

impression of all participants.  

Question Answer-Options 
In general, how do you judge the 
difficulty of evaluating the current 
attitude of the aircraft? 
 

Very 
 easy 

 
20% 

(40%/0%)

Somewhat 
easy 

 
40% 

(30%/50%)

Border 
line 

 
30% 

(20%/40%)

Somewhat 
complicated 

 
10% 

(5%/5%) 

Very difficult 
 

0% 
(0%/0%) 

In general, how do you judge difficulty 
of using the traditional flight instruments 
for this task? 
 

Very 
 easy 

 
5% 

(10%/0%) 

Somewhat 
easy 

 
20% 

(40%/0%) 

Border 
line 

 
35% 

(30%/40%)

Somewhat 
complicated 

 
35% 

(20%/50%) 

Very difficult 
 

5% 
(0%/10%) 

In general, how do you judge the 
difficulty of using the WEBER-Box for 
this task? 
 

Very 
 easy 

 
35% 

(30%/40%)

Somewhat 
easy 

 
45% 

(70%/20%)

Border 
line 

 
10% 

(0%/20%) 

Somewhat 
complicated 

 
5% 

(0%/10%) 

Very difficult 
 
 

5% 
(0%/10%) 

In general, how do you judge the 
benefits of color coding of an unusual 
attitude? 
 

Very 
 good 

 
90% 

(80%/100%)

Somewhat 
good 

 
10% 

(20%/0%) 

Border 
line 

 
0% 

(0%/0%) 

Somewhat 
poor 

 
0% 

(0%/0%) 

Very poor 
 
 

0% 
(0%/0%) 

Did you feel better aware of the spatial 
orientation of the airplane with the 
WEBER-Box in comparison with the 
traditional flight instruments, when both 
are without color coding of an unusual 
attitude? 
 

Much less 
 
 

5% 
(10%/0%) 

Somewhat 
less 

 
5% 

(0%/10%) 

Border 
line 

 
15% 

(30%/0%) 

Somewhat more 
 
 

40% 
(50%/30%) 

Much more 
 
 

35% 
(10%/60%) 

Did you feel better aware of the spatial 
orientation of the airplane with the 
WEBER-Box in comparison with the 
traditional flight instruments, when both 
are with color coding of an unusual 
attitude? 
 

Much less 
 
 

5% 
(10%/0%) 

Somewhat 
less 

 
0% 

(0%/0%) 

Border 
line 

 
25% 

(30%/20%) 

Somewhat more 
 
 

45% 
(50%/40%) 

Much more 
 
 

25% 
(10%/40%) 

Did having the WEBER-Box increase or 
decrease your monitoring demands in 
comparison with the traditional flight 
instruments? 
 

Greatly 
decreased 

 
20% 

(10%/30%) 

Somewhat 
decreased 

 
40% 

(70%/10%)

Unaffected 
 
 

20% 
(10%/30%) 

Somewhat 
increased 

 
10% 

(10%/10%) 

Greatly 
increased 

 
10% 

(0%/20%) 

Table 18.   Results of the post-experiment questionnaire 
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This subjective data provides initial evidence about the preference and acceptance 

of the two display designs and the opinion of the participants towards the option of a 

color-coded feature for detecting unusual aircraft attitudes. 

The difficulty using the traditional display design for judging an attitude was rated 

as “border line” or “somewhat complicated” by 70% of the participants. The majority of 

this 70% are non-pilots, which is not surprising since pilots are trained with this 

instrument. Therefore, the pilots considered the use of the traditional display design 

relatively easy. On the other hand, 80% of all participants rated the use of the prototype 

display design as “easy” or “somewhat easy.”  Interestingly, all of the pilots came to the 

same conclusion. This gives strong evidence that pilots as well as non-pilots 

acknowledge ease of use of the prototype design and felt that it supports their task of 

judging different attitudes. 

The questionnaire data are quite clear regarding the use of color-coding for the 

judgment of unusual attitudes. All of the participants acknowledged the advantage of 

color-coding.  

Over 70% of the participants reported that they were more aware of their spatial 

orientation with the prototype design (WEBER Box), independent of whether it was 

color-coded or not. This result was found for pilots as well as for non-pilots. 
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VII. CONCLUSIONS 

A. OVERALL ASSESSMENT OF THE STATISTICAL RESULTS 
The main question for an overall assessment was whether a significant difference 

between the display combinations could be determined. 

In general, the effect of display design (traditional or WEBER-Box) and the effect 

of color coding was significant. Specifically for the probability of correct response, 

participants using the WEBER-Box reached a probability of correct response of 98% 

without color coding and 100% with color coding. The mean time also decreased when 

switching from the traditional display to the WEBER-Box. Adding color to the displays 

made this decrease even more obvious. Response times were always shorter with the 

WEBER-Box than with the traditional display design, and that held true for both color 

coded and non color coded display. Therefore the WEBER-Box was better than the 

traditional display for both accuracy of determining unusual attitudes and speed (response 

time). 

The outcomes also must be considered in light of the “pilot, non-pilot” variable. 

Since both pilots and non-pilots participated, one has to take into consideration that pilots 

would be expected to perform better. They are not only familiar with the traditional 

display design, but they are also trained specifically on this kind of task, judging an 

attitude and then starting a recovery operation when necessary. This also enhances their 

skills to read and interpret flight instruments. Due to time constraints on the other hand, 

there was very little time to familiarize the non-pilots with the different display designs 

and train them for the task of judging an aircraft attitude. 

The answers in the post-experiment questionnaire confirmed the outcome of the 

statistical analysis. As mentioned in the previous chapter, there is agreement between the 

subjective response of the participants in the post-experiment questionnaire and the 

objective data. For example, both pilots and non-pilots felt that adding color to each of 

the displays increased their ability for spatial awareness and spatial orientation. 80% of 

the pilots and 100% of the non-pilots judged the color-coding to be beneficial. 

Comparing the traditional display design with the prototype display design, more than 
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70% of the participants preferred the new design, independent of adding color or not, 

compared to the old design. This result gains importance because 60% of the pilots 

judged an improved awareness with the prototype design as “somewhat more” or “much 

more”. 

A detailed look into the data shows that not only the probability of correct 

answers increased, but even more important, the time required to judge the current 

attitude decreased significantly. For example the mean response times changed as 

follows: 

• traditional to prototype: from 1.92 sec to 1.37 sec (29% reduction) 

• without color to color: from 1.99 sec to 1.30 sec (36% reduction) 

• traditional without color to traditional with color: from 2.35 sec to 1.49 sec 
(37% reduction) 

• prototype without color to prototype with color: from 1.62 sec to 1.09 sec 
(33% reduction) 

 

By the results of the ANOVA and the additional t-tests, one can see that the 

prototype design enabled the participants to judge the situation faster and more 

accurately. These results clearly show the superiority of the prototype display design 

(WEBER Box). 

 

B. DISCUSSION AND CONCLUSION 

To understand the findings of this study, one must consider the purpose of the 

new prototype design. It was built to support pilots or operators of UAVs in extreme 

situations. With the findings of the research questionnaire, we were able to identify a 

current issue of the UAV community, in our case of the Predator UAV. That is, the 

WEBER-Box would help in the recognition of the current aircraft attitude, facilitate 

recovery when an unusual attitude existed, and help to prevent misperception of an 

unusual attitude. Based on this information, we developed the experiment and compared 

the traditional display design with the new design (WEBER Box). We also evaluated the 

color factor and its two levels, with or without color-coding. 
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In the experimental task, the participants judged their spatial attitude in a static 

environment. Based on the level of significance of α  = 0.05, the outcome was 

remarkably obvious. Using the WEBER Box, performance increased in both accuracy 

and response time. For the dependent variable “correct response,” using the prototype 

display design improved performance by 105%. When using the color-coded feature, the 

same 105% gain of performance was found. The results are even more significant for the 

dependent variable “mean time to respond” where the performance improved by 145% 

using the new prototype design. 

The value of the prototype display also was supported by the post-experiment 

questionnaire and by comments and suggestions as the final feedback after completing 

the experiment. Most of the participants stated that the new display design was very 

helpful in judging the aircraft attitude task. They felt an improvement in their spatial 

awareness and the new design helped them to decrease the time for correctly judging 

their attitude. Thus, the prototype display design made it easier to accomplish their task. 

By adding color to the displays, it was even easier to judge the current attitude and the 

percentage of correct responses increased to almost 100% or even reached a level of 

100% in the case of the new design. Likewise, the time to achieve a correct response 

decreased significantly too. 

Therefore the combination of the new prototype design together with color-coding 

showed a clear increase of performance compared to the traditional display design 

without color that is currently being used.  

 

C. FUTURE RESEARCH 
As is often the case in research, in addition to answering some questions, other 

questions and suggestions have been raised. Most of them fall in the category of 

suggested design improvements, in our case design improvements of the new prototype 

design in combination with the color support. These can be summarized as follows: 

• What is the ideal size of the new prototype design? Since it provides a 
numerical output of pitch and roll, the question is how small could it be to 
still fit in the environment of a ground control station of UAV but with a 
font size still large enough to read the numbers. 
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• Is it possible to decrease the time for judging the attitude by placing the 
digital readout of pitch and roll to a more central location in the display? 
Currently there is still an eye movement necessary from the animated 
aircraft to the digital pitch and roll values, since it is not possible to see all 
of the information with one view. 

• Would it be better to change the color of the entire aircraft avatar instead 
of the output of pitch and roll digital display, when reaching an unusual 
attitude? 

• Can the output pitch and roll be represented in a different way so that the 
aircraft avatar and the output can be seen at the same time? A possible 
solution to this question is, giving the new prototype display design a 
background like a grid. The aircraft avatar would “fly” on top of the grid 
and pitch and roll as additional numerical output could be displayed 
sideways to this grid. 
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APPENDIX A.  RESEARCH QUESTIONNAIRE 

Naval Postgraduate School, LTC Thomas Zirkelbach, German Army Jan 2007 

Background Information 

Spatial awareness and the skills of an operator to transition from the current spatial 
attitude into the necessary spatial orientation and position mainly depend on human 
performance in spatial orientation tasks. Degraded spatial awareness, particularly in 
extreme flight situations, may lead to loss of equipment and to lower operational 
effectiveness. How to maintain and improve spatial awareness is one of the major issues 
in complex 3D environments. In particular, orientation tasks in 3D environments with 
many degrees of freedom are very difficult to accomplish. 

Based on these findings Maj Axel Weber (GE) has developed in his thesis “Application 
of Avatars in Display Design to support Spatial Awareness in Extreme Flight Situations” 
a prototype display design that helps to recognize and recover from an unusual attitude 
faster and more accurate compared to a traditional display design. 

 
Screenshot of the new prototype display design, called WEBER-Box 

 

I am expanding this work researching with my thesis “Pictorial Display Design to 
enhance Spatial Awareness of Operators in Unmanned Aviation” possible applications of 
the WEBER-Box for UAVs. 

Therefore I am currently looking for UAV incidents which will be the initial position for 
an experiment that should have a realistic background. Therefore I am assuming that 
operations of large UAVs are normally not flown in unusual attitude, but nevertheless 
occasionally it occurs. One basic question is “How often do the operators get unintended 
into an unusual attitude?” Thus I have elicited and focused through my research on two 
general approaches. 

Approach 1: Recovery from an unusual attitude 
Currently available literature states that incidents occur if the data link is interrupted, will 
be reestablished and a recovery of the UAV is still not possible. I am also thinking of a 
different situation where there are no problems with the data-link or the GPS-Signal but 
the internal computer which is responsible for the stabilization system fails and the UAV 
e. g. Predator has to be recovered manually by the operator in the Ground Control 
Station. In such a case I assume the UAV will be in an unusual attitude before the 
recovery even starts. 
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Approach 2: Launch and Recovery 
With this approach I focus on the topic how the WEBER-Box could support recovery 
operations. 
 
 
 
 
Naval Postgraduate School, LTC Thomas Zirkelbach, German Army Jan 2007 

Questionnaire 

 
 
1) We have a prototype display design that helps to recognize and recover from an 

unusual attitude. 
 a) Can you think of a situation where it can be used? 
 
 
2) a) Have you experienced situations of unusual attitude? 
 b) Which UAV has been involved? 
 c) What was the cause for this unusual attitude? 
 d) How did you recover it, autonomously or manually? 
 e) If manually, which instruments did you use? 
 f) Have you been successful? 
 
 
3) a) Have you experienced situations of unusual attitude when handing over a UAV 

from one Ground Station to another? 
 b) If yes, which UAV has been involved? 
 c) Please describe: 
 
 
4) a) Have you experienced situations of unusual attitude after an interrupted data link 

was restored? 
 b) If yes, which UAV has been involved? 
 c) Please describe: 
 
 
5) Assume the following scenario:  a Predator has no data-link interruption and the GPS 

signal works, but its internal computer responsible for its autonomous flying fails. 
 a) Have you ever experienced a situation like this? 
 b) Does the operator take over in remote control? 
 c) Did this situation cause an unusual attitude? 
 
 
6) Can you launch and recover in instrument conditions? 
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7) If you had to accomplish evasive maneuvers to escape anti-aircraft fire, 
 a) Would you do this in remote control? 
 b) Which flight instruments would you be using? 
 c) How difficult would this be? 
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APPENDIX B.  IRB APPLICATION 

 
 

Michael E. McCauley, Ph.D. 
Operations Research Department 

Glasgow Hall 
Naval Postgraduate School 
Monterey, California 93943 

831-656-2191 
DSN: 756-2191 

Fax: 831-656-2595 
memccaul@nps.edu 

 
 
To: Protection of Human Subjects Committee 
 
 
Subject: Application for Human Subjects Review for 
 Pictorial Display Design to enhance Spatial Awareness of Operators in 

Unmanned Aviation 
 
 
1. Attached is a set of documents outlining a proposed experiment to be conducted over 

the three month to support the thesis of LTC Thomas Zirkelbach, GE. 
 
2. We are requesting approval of the described experimental protocol. An experimental 

outline is included for your reference that describes the methods and measures we 
plan to use. 

 
3. We include the consent forms, privacy act statements, all materials and forms that a 

subject will read or fill-out, and the debriefing forms (if applicable) we will be using 
in the experiment. 

 
4. We understand that any modifications to the protocol or instruments/measures will 

require submission of updated IRB paperwork and possible re-review.  Similarly, we 
understand that any untoward event or injury that involves a research participant will 
be reported immediately to the IRB Chair and NPS Dean of Research. 

 
 
 
 
 
 
 
Michael E. McCauley 
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APPLICATION FOR 

HUMAN SUBJECTS REVIEW (HSR) 
NPS IRB NUMBER (to be assigned by 
RSPO) 

 
PRINCIPAL INVESTIGATOR(S)  (Full Name, Code, Telephone) 

Michael E. McCauley, Ph.D., Monterey, CA 93943, Phone: 831 656-2191 
(Thesis of LTC Thomas Zirkelbach, GE) 

 
TITLE OF EXPERIMENT 
Does an outside-in aircraft animation display help UAV operators to accurately perceive 
unusual attitudes? 
 
 
APPROVAL REQUESTED           [X] New          [  ] Renewal         [  ] Amendment 
 
 
LEVEL OF RISK     [  ] Exempt      [X] Minimal      [  ] More than Minimal 
Justification: Since there is no wide field of view (FOV) terrain display, simulator sickness 
is extremely unlikely.  A prior study using this prototype display found zero incidence of 
simulator sickness. 
 
 
WORK WILL BE DONE IN (Site/Bldg/Rm) 

NPS, Watkins Hall, RM 212B 

 
ESTIMATED NUMBER OF DAYS TO 
COMPLETE 

30 
 
MAXIMUM NUMBER OF SUBJECTS 

50 

 
ESTIMATED LENGTH OF EACH 
SUBJECT’S PARTICIPATION 

2 hours (1 hour in flight simulation) 
 
SPECIAL POPULATIONS THAT WILL BE USED AS SUBJECTS 
 
[  ] Subordinates    [  ] Minors    [X] NPS Students    [  ] Special Needs (e.g. Pregnant women) 
 
Specify safeguards to avoid undue influence and protect subject’s rights: 
Participant Consent Form & Minimal Risk Statement 
 
SCIENTIFIC MERIT REVIEW  (Check all that apply) 
 
[  ] This research is part of a funded project (Job Order Number                                    ) 
 
[X] This research is a student thesis (Attach a copy of the approved thesis proposal) 
 
[  ] Other (Attach a complete research proposal) 
 
 
OUTSIDE COOPERATING INVESTIGATORS AND AGENCIES 
None 
 [  ] A copy of the cooperating institution’s HSR decision is attached. 
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DESCRIPTION OF RESEARCH (attach additional sheet if needed).   
 

Methodology attached 
 
 
 
I have read and understand NPS Notice on the Protection of Human Subjects. If there are any 
changes in any of the above information or any changes to the attached Protocol, Consent 
Form, or Debriefing Statement, I will suspend the experiment until I obtain new IRB approval. 
 
SIGNATURE_________________________________________  DATE_________________ 
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Methodology 

 
Experiment Goals and Purpose 
This research will investigate the effectiveness of a prototype display for pilot/operator 
recognition of aircraft/UAV attitude. 
 
Research Questions 
- Will the new display design help operators to recognize aircraft attitude accurately? 
- Will the new design help in discriminating between a normal and unusual attitude? 
- Will the new design help prevent misperception of an unusual attitude? 
- Will the new design reduce errors in recovery from unusual attitudes? 
- Will the new design support the substitution of operators for trained pilots in unmanned 

aviation tasks? 
- What will be the level of user acceptance of operators and pilots regarding the new 

design? 
 
Participants 
The participants will be randomly assigned on a volunteer basis from students and faculty 
of NPS. The study will involve at the most 50 participants. It is intended to split them 
equally into 25 pilots and 25 non-pilots. 
 
Apparatus 
The experiment will take place at the Naval Postgraduate School, Monterey, California, 
Watkins Building, room 212B.  Two workstations will be used. Workstation 1 is for 
instruction and training while Workstation 2 will be established for the underlying 
experiment. 
 
Workstation 1: 
The computer-generated images will be displayed on a 19” computer monitor with a 1024 
x 768 pixel resolution.  The pictures of the flight situations were generated by screenshots 
of the commercial flight simulator software X-Plane™, version 7.13 and by screenshots of 
the WEBER-Box program. The pictures were stored in a PowerPoint™ slideshow to ensure 
that every participant will see the different aircraft attitudes in the same order. This 
slideshow will be used to explain the differences between a usual and unusual attitude. The 
simulation of the flight situations also will be generated by X-Plane™ and by the WEBER-
Box program. The predefined simulations of usual and unusual attitude will be stored in X-
Plane™ to help the participants to gain a better understanding of this complex situation in a 
dynamic environment. 
 
Workstation 2: 
The computer-generated images will be displayed on two 19” computer monitors with a 
1024 x 768 pixel resolution. The two screens will be located on top of each other, similar to 
the ground station of a Predator UAV.  The simulation of the flight situations will be 
generated by the commercial flight simulator software X-Plane™, version 7.13 and by the 
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WEBER-Box program. The predefined simulations of usual and unusual attitude will be 
stored in X-Plane™ to ensure that every participant will see the different attitudes in the 
same order. 
 
Procedures 
The overall experiment will be subdivided into four phases. 
 
Phase one – Preparation: 
The participant will be asked to fill out the necessary paperwork, including a consent form, 
a privacy act statement, a minimal-risk information form, and an initial/ demographic 
questionnaire. 
 
Phase two – Introduction and Training 
The participant will be introduced to the experiment, receiving information about the UAV, 
the task as an operator of the UAV, and details about usual and unusual attitudes. The 
participant also will watch a 10-minute introduction video of usual and unusual attitudes as 
displayed by the traditional flight instruments and by the WEBER-Box. This pre-
experimental period, phase one and two, will take approximately 25 minutes. 
 
Phase three – Experiment 
The participant will start with the first experimental sub-task. Each of his or her 14 trials 
will be scheduled for 120 seconds. The first two trials will be practice trials. The 
experimenter will start the prepared simulation of several flight situations that end in a 
usual or unusual attitude and, after 120 seconds, the simulation will stop with a picture of 
flight instruments in a certain flight situation. The participant will judge the “frozen” 
situation as a usual or unusual attitude. Then, the experimenter will initiate the next trial 
until the participant has finished twelve trials, plus two test trials.  
 
After accomplishing the first block of experiments, the participant will take a 5-minute 
break. Then the participant will start the second experimental task.  All the participants will 
be exposed to all of the instrument setups and all of the sub-experiments (a within-subjects 
design). Each participant will be presented with seven trails of usual attitude with 
traditional design and seven trails of unusual attitude with the traditional design. Then the 
same procedure will apply with the new display design, the WEBER Box. 
 
Phase four – Questionnaire 
When finished, the participant will be asked to fill out the post-experimental questionnaire.  
This completes the experimental session. 
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APPENDIX C.  IRB APPROVAL 
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APPENDIX D.  INTRODUCTION / TASK DESCRIPTION 
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APPENDIX E.  PARTICIPANT CONSENT FORM & MINIMAL 
RISK STATEMENT 

Naval Postgraduate School 
Participant Consent Form & 

Minimal Risk Consent Statement   
 

 
Introduction.  You are invited to participate in a study entitled Pictorial Display Design 
to enhance Spatial Awareness of Operators in Unmanned Aviation being conducted by 
the Naval Postgraduate School MOVES Institute.   
 
Procedures.  If I agree to participate in this study, I understand that I will be provided with 
an explanation of the purposes of the research, a description of the procedures to be used, 
identification of any experimental procedures, and the expected duration of my 
participation.    

Synopsis:  There will be two sessions: (1) a 30 minute test phase with traditional 
flight instruments and (2) a 30 minute test phase with the new prototype display design, 
during which you will be expected to accomplish a number of tasks related to orientation 
during flight operations. 
 
Risks and Benefits.  I understand that this project does not involve greater than minimal 
risk and involves no known reasonably foreseeable risks or hazards greater than those 
encountered in everyday life.  I understand that there is a very small chance that susceptible 
participants could experience symptoms of simulator sickness such as “queasy” stomach.  I 
agree that, if I do experience such symptoms, I will remain in the testing area until they 
have subsided.  I have also been informed of any benefits to myself or to others that may 
reasonably be expected as a result of this research. 
 
Compensation.  I understand that no tangible reward will be given.  I understand that a 
copy of the research results will be available at the conclusion of the experiment. 
 
Confidentiality & Privacy Act.  I understand that all records of this study will be kept 
confidential and that my privacy will be safeguarded.  No information will be publicly 
accessible which could identify me as a participant, and I will be identified only as a code 
number on all research forms.  I understand that records of my participation will be 
maintained by NPS for five years, after which they will be destroyed.   
 
Voluntary Nature of the Study.  I understand that my participation is strictly voluntary, 
and if I agree to participate, I am free to withdraw at any time without prejudice.   
 
Points of Contact.  I understand that if I have any questions or comments regarding this 
project upon the completion of my participation, I should contact the Principal Investigator, 
Dr. Michael E. McCauley, 656-2191, memccaul@nps.edu. Any medical questions should 
be addressed to LTC Eric Morgan, MC, USA, (CO, POM Medical Clinic), (831) 242-7550, 
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eric.morgan@nw.amedd.army.mil.  Any other questions or concerns may be addressed to 
the IRB Chair, LT Brent Olde, 656-3807, baolde@nps.edu. 
 
Statement of Consent.  I have read and understand the above information.  I have asked 
all questions and have had my questions answered.  I agree to participate in this study.  I 
will be provided with a copy of this form for my records. 
 
________________________________________  __________________ 
Participant’s Signature     Date 
 
________________________________________  __________________ 
Researcher’s Signature     Date 
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APPENDIX F.  PRIVACY ACT STATEMENT 

NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA  93943 

PRIVACY ACT STATEMENT 

 
1. Purpose: Spatial cognition data will be collected to enhance knowledge, and to 

develop tests, procedures, and equipment to improve the development of Virtual 
Environments. 
 

2. Use: Spatial cognition data will be used for statistical analysis by the Departments of 
the Navy and Defense, and other U.S. Government agencies, provided this use is 
compatible with the purpose for which the information was collected.  Use of the 
information may be granted to legitimate non-government agencies or individuals by 
the Naval Postgraduate School in accordance with the provisions of the Freedom of 
Information Act. 

 
3. Disclosure/Confidentiality:   
 

a. I have been assured that my privacy will be safeguarded.  I will be assigned a 
control or code number which thereafter will be the only identifying entry on 
any of the research records.  The Principal Investigator will maintain the cross-
reference between name and control number.  It will be decoded only when 
beneficial to me or if some circumstances, which is not apparent at this time, 
would make it clear that decoding would enhance the value of the research data.  
In all cases, the provisions of the Privacy Act Statement will be honored. 
 

b. I understand that a record of the information contained in this Consent Statement 
or derived from the experiment described herein will be retained permanently at 
the Naval Postgraduate School or by higher authority.  I voluntarily agree to its 
disclosure to agencies or individuals indicated in paragraph 3 and I have been 
informed that failure to agree to such disclosure may negate the purpose for 
which the experiment was conducted. 

 
c. I also understand that disclosure of the requested information, including my 

Social Security Number, is voluntary. 
 
 

_____________________________________ 
Name, Grade/Rank (if applicable)      
[Please print] 
 
 
__________________________________________________________________ 
Signature of Volunteer               Date 
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Date: 

APPENDIX G.  INITIAL QUESTIONNAIRE 

Initial Questionnaire 
 

Participant ID  
 

Age  

Gender Male □  Female   □ 
 

 
Are you experienced in aviation in any 
regard (incl. playing Flight Simulation 
Games)? 

YES □ NO □ 

 
If you answered the last question with 
YES, please proceed HERE. 

 

Are you an aviator/pilot?  YES □   NO □ 
Are you familiar with the basic set of 
flight instruments?  YES □   NO □ 
Are you familiar with the basic aircraft 
flight controls?  YES □   NO □ 

Did you operate any of these aircraft?: 
Fixed-Wing (Jet/Propeller) 
Rotor-Wing Aircraft  
UAV  

 Fixed □   Rotor □ 
 Jet □        Propeller □ 
 UAV □ 
 

How many flight hours do you have?  Hours 

How many hours in a flight simulator do 
you have?  Hours 

How long ago was your last flight? 
Years   Month(s) 

How long ago was your last use of a 
flight simulator? 

Years   Month(s) 

Are you trained in procedures of 
recovery from unusual attitude?  YES □   NO □ 
 

Leave blank!
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Participant ID  

 
 
If you are an active/former aviator/pilot, 
please proceed HERE: 

 

Have you ever experienced any kind of 
Spatial Disorientation?  YES □   NO □ 

More than once?  YES □   NO □ 

Briefly describe the situation/s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

PLEASE STOP HERE! 
 
 

Leave blank!
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APPENDIX H.  POST-EXPERIMENT QUESTIONNAIRE 

Post-Experiment Questionnaire 
 
 

 
Participant ID  

 
 
 
 
 

Question Answer-Options 
In general, how do you judge the 
difficulty of evaluating the current 
attitude of the aircraft? 
 

Very 
 easy 

 

Somewhat 
easy 

 

Border 
line 
 

Somewhat 
complicated 

 

Very difficult 

 

In general, how do you judge difficulty 
of using the traditional flight instruments 
for this task? 
 

Very 
 easy 

 

Somewhat 
easy 

 

Border 
line 
 

Somewhat 
complicated 

 

Very difficult 
 

In general, how do you judge the 
difficulty of using the WEBER-Box for 
this task? 
 

Very 
 easy 

 

Somewhat 
easy 

 

Border 
line 
 

Somewhat 
complicated 

 

Very difficult 
 

In general, how do you judge the 
benefits of color coding of an unusual 
attitude? 
 

Very 
 good 

 

Somewhat 
good 

 

Border 
line 
 

Somewhat 
poor 

 

Very poor 

 

Did you feel better aware of the spatial 
orientation of the airplane with the 
WEBER-Box in comparison with the 
traditional flight instruments, when both 
are without color coding of an unusual 
attitude? 
 

Much less 
 
 

Somewhat 
less 

 

Border 
line 

 

Somewhat more 
 

Much more 
 

Did you feel better aware of the spatial 
orientation of the airplane with the 
WEBER-Box in comparison with the 
traditional flight instruments, when both 
are with color coding of an unusual 
attitude? 
 

Much less 
 
 

Somewhat 
less 

 

Border 
line 

 

Somewhat more 
 

Much more 
 

Did having the WEBER-Box increase or 
decrease your monitoring demands in 
comparison with the traditional flight 
instruments? 
 

Greatly 
decreased 

 

Somewhat 
decreased 

 

Unaffected 
 

Somewhat 
increased 

 

Greatly 
increased 

 

 

 

Leave blank!
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APPENDIX I.  COMMENTS/ SUGGESTIONS/ OPINIONS 

 
Participant ID  

 
 
 

Comments/Suggestions/Opinions 
 
In General: 
 
 
 
 
 
 
 
 
Experiment Tasks: 
 
 
 
 
 
 
 
Traditional Instruments: 
 
 
 
 
 
 
 
WEBER-Box: 
 
 

Leave blank!
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APPENDIX J.  ORDER OF TRIALS 

Order of Trials 
 
Project Study 02 

Participant Order 
1. S01 NP A B C D 
2. S10 P B C D A 
3. S02 NP C D A B 

 

Experiment 

Participant Order 
1. 201 NP A B C D 
2. 101 P B C D A 
3. 202 NP C D A B 
4. 001 P D A B C 
5. 203 NP A B C D 
6. 002 P B C D A 
7. 003 P C D A B 
8. 004 P D A B C 
9. 005 P A B C D 
10. 204 NP B C D A 
11. 205 NP C D A B 
12. 006 P D A B C 
13. 206 NP A B C D 
14. 207 NP B C D A 
15. 007 P C D A B 
16. 208 NP D A B C 
17. 209 NP A B C D 
18. 008 P B C D A 
19. 102 P C D A B 
20. 210 NP D A B C 

 

Legend: A: Traditional Design without color 
 B: Prototype Design without color 
 C: Traditional Design with color 
 D: Prototype Design with color 
 

 P: Pilot 
 NP: Non-Pilot 
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APPENDIX K:  EVALUATION FORM 

Participant ID  
 
Start with Traditional Design without color: A  

Trails Attitude correct incorr. Time 

1 – test trial A usual pitch 15° nose up    

2 – test trial B usual bank angle 25° left    

3 – test trail C unusual bank angle 60° right    

4 – test trail D unusual pitch 15° nose down    

5 – test trail E unusual pitch 35° nose up &  
  bank angle 55° left 

   

6 M unusual pitch 30° nose up    

7 H usual bank angle 35° left    

8 J usual pitch 10° nose up &
  bank angle 20° right 

   

9 O unusual bank angle 65° left    

10 G usual pitch 05° nose down    

11 Q unusual pitch 05° nose down &
  bank angle 55° left 

   

12 N unusual pitch 20° nose down    

13 F usual pitch 20° nose up    

14 P unusual bank angle 55° right    

15 R unusual pitch 25° nose down &
  bank angle 35° left 

   

16 K usual pitch 05° nose down &
  bank angle 35° left 

   

17 I usual bank angle 25° right    

18 S unusual pitch 40° nose up &
  bank angle 60° right 

   

19 L usual pitch 5° nose down &
  bank angle 25° right 
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Start with Traditional Design with color: C  

Trails Attitude correct incorr. Time 

1 – test trial A usual pitch 15° nose up    

2 – test trial B usual bank angle 25° left    

3 – test trail C unusual bank angle 60° right    

4 – test trail D unusual pitch 15° nose down    

5 – test trail E unusual pitch 35° nose up &  
  bank angle 55° left 

   

6 P unusual bank angle 55° right    

7 M unusual pitch 30° nose up    

8 K usual pitch 05° nose down &
  bank angle 35° left 

   

9 N unusual pitch 20° nose down    

10 I usual bank angle 25° right    

11 J usual pitch 10° nose up &
  bank angle 20° right 

   

12 O unusual bank angle 65° left    

13 S unusual pitch 40° nose up &
  bank angle 60° right 

   

14 G usual pitch 05° nose down    

15 R unusual pitch 25° nose down &
  bank angle 35° left 

   

16 H usual bank angle 35° left    

17 Q unusual pitch 05° nose down &
  bank angle 55° left 

   

18 L usual pitch 5° nose down &
  bank angle 25° right 

   

19 F usual pitch 20° nose up    
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Start with WEBER-Box without color: B  

Trails Attitude correct incorr. Time 

1 – test trial A usual pitch 15° nose up    

2 – test trial B usual bank angle 25° left    

3 – test trail C unusual bank angle 60° right    

4 – test trail D unusual pitch 15° nose down    

5 – test trail E unusual pitch 35° nose up &  
  bank angle 55° left 

   

6 I usual bank angle 25° right    

7 G usual pitch 05° nose down    

8 O unusual bank angle 65° left    

9 P unusual bank angle 55° right    

10 N unusual pitch 20° nose down    

11 H usual bank angle 35° left    

12 K usual pitch 05° nose down &
  bank angle 35° left 

   

13 M unusual pitch 30° nose up    

14 F usual pitch 20° nose up    

15 Q unusual pitch 05° nose down &
  bank angle 55° left 

   

16 J usual pitch 10° nose up &
  bank angle 20° right 

   

17 R unusual pitch 25° nose down &
  bank angle 35° left 

   

18 L usual pitch 5° nose down &
  bank angle 25° right 

   

19 S unusual pitch 40° nose up &
  bank angle 60° right 
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Start with WEBER-Box with color: D  

Trails Attitude correct incorr. Time 

1 – test trial A usual pitch 15° nose up    

2 – test trial B usual bank angle 25° left    

3 – test trail C unusual bank angle 60° right    

4 – test trail D unusual pitch 15° nose down    

5 – test trail E unusual pitch 35° nose up &  
  bank angle 55° left 

   

6 Q unusual pitch 05° nose down &
  bank angle 55° left 

   

7 F usual pitch 20° nose up    

8 K usual pitch 05° nose down &
  bank angle 35° left 

   

9 O unusual bank angle 65° left    

10 N unusual pitch 20° nose down    

11 R unusual pitch 25° nose down &
  bank angle 35° left 

   

12 L usual pitch 5° nose down &
  bank angle 25° right 

   

13 I usual bank angle 25° right    

14 M unusual pitch 30° nose up    

15 J usual pitch 10° nose up &
  bank angle 20° right 

   

16 G usual pitch 05° nose down    

17 P unusual bank angle 55° right    

18 S unusual pitch 40° nose up &
  bank angle 60° right 

   

19 H usual bank angle 35° left    
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Legend: 

Index Attitude Pitch Bank angle 

A usual pitch 15° nose up  

B usual  bank angle 25° left 

C unusual  bank angle 60° right 

D unusual pitch 15° nose down  

E unusual pitch 35° nose up & bank angle 55° left 

F usual pitch 20° nose up  

G usual pitch 05° nose down  

H usual  bank angle 35° left 

I usual  bank angle 25° right 

J usual pitch 10° nose up & bank angle 20° right 

K usual pitch 5° nose down & bank angle 35° left 

L usual pitch 5° nose down & bank angle 25° right 

M unusual pitch 30° nose up  

N unusual pitch 20° nose down  

O unusual  bank angle 65° left 

P unusual  bank angle 55° right 

Q unusual pitch 5° nose down & bank angle 55° left 

R unusual pitch 25° nose down & bank angle 35° left 

S unusual pitch 40° nose up & bank angle 60° right 
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